题意:有很多棍子,从棍子中选出两个棍子集合,使他们的和相等,求能取得的最多棍子数。
解法:容易看出有一个多阶段决策的过程,对于每个棍子,我们有 可以不选,或是选在第一个集合,或是选在第二个集合 这三种决策。因为两个集合最后的和要相等,那么令一个集合为正,另一个为负,那么最后和为0,我们用偏移0的量来作为状态之一。
dp[i][j]表示前 i 个 偏移量为 j 的最大棍子数,因为每根棍最长为200,所以偏移量最多为+-20000,所以在+-20000之间枚举,最多100*40000
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <algorithm> #include <string> #include <vector> using namespace std; #define N 30007 int dp[105][60004],path[105][60004]; int a[105]; int main() { freopen("polygon.in","r",stdin); freopen("polygon.out","w",stdout); int n,i,j; while(scanf("%d",&n)!=EOF) { memset(dp,-1,sizeof(dp)); int sum = 0; for(i=1;i<=n;i++) { scanf("%d",&a[i]); sum += a[i]; } int low = N-sum, high = N+sum; dp[0][N] = 0; for(i=1;i<=n;i++) { for(j=low;j<=high;j++) { if(dp[i-1][j] != -1 && dp[i][j] < dp[i-1][j]) { dp[i][j] = dp[i-1][j]; path[i][j] = j; } if(dp[i-1][j-a[i]] != -1 && dp[i][j] < dp[i-1][j-a[i]]+1) { dp[i][j] = dp[i-1][j-a[i]]+1; path[i][j] = j-a[i]; } if(dp[i-1][j+a[i]] != -1 && dp[i][j] < dp[i-1][j+a[i]]+1) { dp[i][j] = dp[i-1][j+a[i]]+1; path[i][j] = j+a[i]; } } } printf("%d ",dp[n][N]); int now = N,pre; vector<int> UP,DOWN; for(i=n;i>=1;i--) { pre = path[i][now]; if(now > pre) UP.push_back(now-pre); if(pre > now) DOWN.push_back(pre-now); now = pre; } int x = 0, y = 0; for(i=0;i<UP.size();i++) { printf("%d %d ",x,y); x += UP[i]; printf("%d %d ",x,y); y++; } for(i=0;i<DOWN.size();i++) { printf("%d %d ",x,y); x -= DOWN[i]; printf("%d %d ",x,y); y++; } } return 0; }