• POJ 1556 The Doors --几何,最短路


    题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少。

    解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短路SPFA,即可得出答案。

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <string>
    #include <vector>
    #include <queue>
    #define Mod 1000000007
    #define eps 1e-8
    using namespace std;
    #define N 100017
    
    struct Point{
        double x,y;
        Point(double x=0, double y=0):x(x),y(y) {}
        void input() { scanf("%lf%lf",&x,&y); }
    };
    typedef Point Vector;
        bool operator < (const Line &L)const { return ang < L.ang; }
    };
    int dcmp(double x) {
        if(x < -eps) return -1;
        if(x > eps) return 1;
        return 0;
    }
    template <class T> T sqr(T x) { return x * x;}
    Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
    Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
    Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
    Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
    bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
    bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
    bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
    bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
    double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
    double Length(Vector A) { return sqrt(Dot(A, A)); }
    double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
    double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
    Vector VectorUnit(Vector x){ return x / Length(x);}
    Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
    double angle(Vector v) { return atan2(v.y, v.x); }
    
    double DisP(Point A,Point B){
        return Length(B-A);
    }
    bool SegmentIntersection(Point A,Point B,Point C,Point D) {
        if(dcmp(Cross(C-A,B-A)*Cross(D-A,B-A)) < 0 && dcmp(Cross(A-C,D-C)*Cross(B-C,D-C)) < 0) return true;
        return false;
    }
    //data segment
    struct node{
        Point P[2];
    }line[206];
    Point p[206];
    vector<pair<int,double> > G[206];
    double dis[206];
    int vis[206],tot,Ltot,S,E;
    //data ends
    
    void SPFA()
    {
        for(int i=1;i<=tot;i++) dis[i] = Mod;
        memset(vis,0,sizeof(vis));
        queue<int> q;
        q.push(S);
        vis[S] = 1, dis[S] = 0;
        while(!q.empty())
        {
            int u = q.front();
            q.pop();
            vis[u] = 0;
            for(int i=0;i<G[u].size();i++)
            {
                int v = G[u][i].first;
                double w = G[u][i].second;
                if(dis[v] > dis[u] + w)
                {
                    dis[v] = dis[u] + w;
                    if(!vis[v]) { q.push(v), vis[v] = 1; }
                }
            }
        }
    }
    
    int main()
    {
        int n,i,j,k,h;
        double x,a,b,c,d;
        while(scanf("%d",&n)!=EOF && n!=-1)
        {
            tot = 1,Ltot = 0;
            p[1] = Point(0,5);
            for(i=1;i<=n;i++)
            {
                scanf("%lf%lf%lf%lf%lf",&x,&a,&b,&c,&d);
                p[++tot] = Point(x,a);
                p[++tot] = Point(x,b);
                p[++tot] = Point(x,c);
                p[++tot] = Point(x,d);
                line[++Ltot].P[0] = Point(x,0), line[Ltot].P[1] = Point(x,a);
                line[++Ltot].P[0] = Point(x,b), line[Ltot].P[1] = Point(x,c);
                line[++Ltot].P[0] = Point(x,d), line[Ltot].P[1] = Point(x,10);
            }
            p[++tot] = Point(10,5);
            Point A,B;
            for(i=0;i<=tot;i++) G[i].clear();
            for(i=1;i<=tot;i++)        //start
            {
                for(j=i+1;j<=tot;j++)  //end
                {
                    A = p[i], B = p[j];
                    for(k=1;k<=Ltot;k++)
                    {
                        if(SegmentIntersection(A,B,line[k].P[0],line[k].P[1]))
                            break;
                    }
                    if(k == Ltot+1)
                    {
                        G[i].push_back(make_pair(j,DisP(A,B)));
                        G[j].push_back(make_pair(i,DisP(A,B)));
                    }
                }
            }
            S = 1, E = tot;
            SPFA();
            printf("%.2f
    ",dis[E]);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    SAP HUM事务代码 HUMAT 之初探
    SAP HUM 锁住一个HU?
    SAP MM 标准采购组织的分配对于寄售采购订单收货的影响
    SAP MM已经转成PO的采购申请Item依旧可以被删除?
    SAP MM A工厂下的PR可以转成B工厂下的PO?
    SAP MM 明明已经扩展供应商到采购组织下,采购订单里还是报错?
    SAP HUM 事务代码HUMO为整托做Scrap
    2018-8-29-Roslyn-静态分析
    2018-2-13-win10-UWP-等级控件
    2018-2-13-win10-uwp-改变鼠标
  • 原文地址:https://www.cnblogs.com/whatbeg/p/4109248.html
Copyright © 2020-2023  润新知