• 1301. Number of Paths with Max Score


    You are given a square board of characters. You can move on the board starting at the bottom right square marked with the character 'S'.

    You need to reach the top left square marked with the character 'E'. The rest of the squares are labeled either with a numeric character 1, 2, ..., 9 or with an obstacle 'X'. In one move you can go up, left or up-left (diagonally) only if there is no obstacle there.

    Return a list of two integers: the first integer is the maximum sum of numeric characters you can collect, and the second is the number of such paths that you can take to get that maximum sum, taken modulo 10^9 + 7.

    In case there is no path, return [0, 0].

    Example 1:

    Input: board = ["E23","2X2","12S"]
    Output: [7,1]
    

    Example 2:

    Input: board = ["E12","1X1","21S"]
    Output: [4,2]
    

    Example 3:

    Input: board = ["E11","XXX","11S"]
    Output: [0,0]
    

    Constraints:

    • 2 <= board.length == board[i].length <= 100
    class Solution {
        public int[] pathsWithMaxScore(List<String> board) {
            int MOD = (int)(1e9 + 7);
            int m = board.size();
            int[][] dp = new int[m+1][m+1];
            int[][] cc = new int[m+1][m+1];
            cc[m-1][m-1] = 1;
            for(int i = m-1;i>=0;i--)
                for(int j = m-1; j>=0;j--){
                    char c= board.get(i).charAt(j);
                    if(c!='X'){
                        int max = Math.max(Math.max(dp[i+1][j], dp[i][j+1]), dp[i+1][j+1]);
                        int num = c-'0';
                        if(c=='S' || c=='E') num = 0;
                        dp[i][j] = num + max;
                        if(dp[i+1][j] == max) cc[i][j] = (cc[i][j] + cc[i+1][j]) % MOD;
                        if(dp[i+1][j+1] == max) cc[i][j] = (cc[i][j] + cc[i+1][j+1]) % MOD;
                        if(dp[i][j+1] == max) cc[i][j] = (cc[i][j] + cc[i][j+1]) % MOD;
                    }
                }
            
            return cc[0][0] > 0 ? new int[]{dp[0][0], cc[0][0]} : new int[]{0, 0};
        }
    }

     如果是单纯的最大值,从右下角往上走,每一步选取最大的邻居加上当前值就可以

    加上要算path后,当前path必须先判断要从哪个邻居过来(通过判断最大邻居获得)

     https://www.youtube.com/watch?v=WwdjLkWmDPs

    这题好叼,两个不同的dp相辅相成。注意最后的判断条件是cc[0][0]>0而不能是dp[0][0] > 0, 否则如果中间有一行xxx的话会出现判断错误

  • 相关阅读:
    Exercise 3: Numbers And Math
    Exercise 1: A Good First Program
    Lambda表达式详解
    @CacheEvict中的allEntries与beforeInvocation
    swagger接口文档查看地址
    开发常用软件下载
    mybatis中的<trim prefix="" suffix="" suffixOverrides="" prefixOverrides=""></trim>说明
    Git初使用
    vue.js的引用地址
    Git push代码到远程仓库
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/12344867.html
Copyright © 2020-2023  润新知