Problem statement:
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note: The solution set must not contain duplicate quadruplets.
For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0. A solution set is: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]
Solution:
No, it is the 4sum problem, more dimension than 3sum. But, they are the same idea.
Time complexity O(n * n * n)
class Solution { public: vector<vector<int>> fourSum(vector<int>& nums, int target) { // divide it into two sum problem int size = nums.size(); vector<vector<int>> quadruplets; sort(nums.begin(), nums.end()); for(int i = 0; i < size - 3; i++){ for(int j = i + 1; j < size - 2; j++){ int left = j + 1; int right = size - 1; while(left < right){ if(nums[i] + nums[j] + nums[left] + nums[right] == target){ quadruplets.push_back({nums[i], nums[j], nums[left], nums[right]}); while(left < right && nums[right - 1] == nums[right]){ right--; } right--; while(left < right && nums[left] == nums[left + 1]){ left++; } left++; } else if (nums[i] + nums[j] + nums[left] + nums[right] > target) { while(left < right && nums[right - 1] == nums[right]){ right--; } right--; } else { while(left < right && nums[left] == nums[left + 1]){ left++; } left++; } } while(j + 1 < size && nums[j] == nums[j + 1]){ j++; } } while(i + 1 < size && nums[i] == nums[i + 1]){ i++; } } return quadruplets; } };