• 常见的深度卷积网络结构整理


    FPN

    bottom up + top down.

    参考:https://github.com/luliyucoordinate/FPN_pytorch/blob/master/fpn.py

    import torch.nn as nn
    import torch.nn.functional as F
    import math
    
    
    __all__=['FPN']
    
    class Bottleneck(nn.Module):
        expansion = 4
    
        def __init__(self, in_planes, planes, stride=1, downsample=None):
            super(Bottleneck, self).__init__()
            self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
            self.bn1 = nn.BatchNorm2d(planes)
            self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
            self.bn2 = nn.BatchNorm2d(planes)
            self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
            self.bn3 = nn.BatchNorm2d(self.expansion * planes)
            self.relu = nn.ReLU(inplace=True)
            self.downsample = downsample
            self.stride = stride
            
    
        def forward(self, x):
            residual = x
            
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            
            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)
            
            out = self.conv3(out)
            out = self.bn3(out)
    
            if self.downsample is not None:
                residual = self.downsample(x)
            
            out += residual
            out = self.relu(out)
            
            return out
    
    
    class FPN(nn.Module):
        def __init__(self, block, layers):
            super(FPN, self).__init__()
            self.inplanes = 64
    
            self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
            self.bn1 = nn.BatchNorm2d(64)
    
            self.relu = nn.ReLU(inplace=True)
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            # Bottom-up layers
            self.layer1 = self._make_layer(block,  64, layers[0])
            self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
    
            # Top layer
            self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0)  # Reduce channels
    
            # Smooth layers
            self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
            self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
            self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
    
            # Lateral layers
            self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
            self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0)
            self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0)
            
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                    m.weight.data.normal_(0, math.sqrt(2. / n))
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
    
        def _make_layer(self, block, planes, blocks, stride=1):
            downsample  = None
            if stride != 1 or self.inplanes != block.expansion * planes:
                downsample  = nn.Sequential(
                    nn.Conv2d(self.inplanes, block.expansion * planes, kernel_size=1, stride=stride, bias=False),
                    nn.BatchNorm2d(block.expansion * planes)
                )
            layers = []
            layers.append(block(self.inplanes, planes, stride, downsample))
            self.inplanes = planes * block.expansion
            for i in range(1, blocks):
                layers.append(block(self.inplanes, planes))
    
            return nn.Sequential(*layers)
    
    
        def _upsample_add(self, x, y):
            _,_,H,W = y.size()
            return F.upsample(x, size=(H,W), mode='bilinear') + y
    
        def forward(self, x):
            # Bottom-up
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            c1 = self.maxpool(x)
            
            c2 = self.layer1(c1)
            c3 = self.layer2(c2)
            c4 = self.layer3(c3)
            c5 = self.layer4(c4)
            # Top-down
            p5 = self.toplayer(c5)
            p4 = self._upsample_add(p5, self.latlayer1(c4))
            p3 = self._upsample_add(p4, self.latlayer2(c3))
            p2 = self._upsample_add(p3, self.latlayer3(c2))
            # Smooth
            p4 = self.smooth1(p4)
            p3 = self.smooth2(p3)
            p2 = self.smooth3(p2)
            return p2, p3, p4, p5
    
    
    def FPN101():
        return FPN(Bottleneck, [2,2,2,2])
    View Code

    RetinaNet

    retinanet的结构和FPN在输出层上有些区别.

    参考:https://github.com/yhenon/pytorch-retinanet/blob/master/model.py

    import torch.nn as nn
    import torch
    import math
    import time
    import torch.utils.model_zoo as model_zoo
    from utils import BasicBlock, Bottleneck, BBoxTransform, ClipBoxes
    from anchors import Anchors
    import losses
    from lib.nms.pth_nms import pth_nms
    
    def nms(dets, thresh):
        "Dispatch to either CPU or GPU NMS implementations.
        Accept dets as tensor"""
        return pth_nms(dets, thresh)
    
    model_urls = {
        'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
        'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
        'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
        'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
        'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    }
    
    class PyramidFeatures(nn.Module):
        def __init__(self, C3_size, C4_size, C5_size, feature_size=256):
            super(PyramidFeatures, self).__init__()
            
            # upsample C5 to get P5 from the FPN paper
            self.P5_1           = nn.Conv2d(C5_size, feature_size, kernel_size=1, stride=1, padding=0)
            self.P5_upsampled   = nn.Upsample(scale_factor=2, mode='nearest')
            self.P5_2           = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
    
            # add P5 elementwise to C4
            self.P4_1           = nn.Conv2d(C4_size, feature_size, kernel_size=1, stride=1, padding=0)
            self.P4_upsampled   = nn.Upsample(scale_factor=2, mode='nearest')
            self.P4_2           = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
    
            # add P4 elementwise to C3
            self.P3_1 = nn.Conv2d(C3_size, feature_size, kernel_size=1, stride=1, padding=0)
            self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
    
            # "P6 is obtained via a 3x3 stride-2 conv on C5"
            self.P6 = nn.Conv2d(C5_size, feature_size, kernel_size=3, stride=2, padding=1)
    
            # "P7 is computed by applying ReLU followed by a 3x3 stride-2 conv on P6"
            self.P7_1 = nn.ReLU()
            self.P7_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=2, padding=1)
    
        def forward(self, inputs):
    
            C3, C4, C5 = inputs
    
            P5_x = self.P5_1(C5)
            P5_upsampled_x = self.P5_upsampled(P5_x)
            P5_x = self.P5_2(P5_x)
            
            P4_x = self.P4_1(C4)
            P4_x = P5_upsampled_x + P4_x
            P4_upsampled_x = self.P4_upsampled(P4_x)
            P4_x = self.P4_2(P4_x)
    
            P3_x = self.P3_1(C3)
            P3_x = P3_x + P4_upsampled_x
            P3_x = self.P3_2(P3_x)
    
            P6_x = self.P6(C5)
    
            P7_x = self.P7_1(P6_x)
            P7_x = self.P7_2(P7_x)
    
            return [P3_x, P4_x, P5_x, P6_x, P7_x]
    
    
    class RegressionModel(nn.Module):
        def __init__(self, num_features_in, num_anchors=9, feature_size=256):
            super(RegressionModel, self).__init__()
            
            self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
            self.act1 = nn.ReLU()
    
            self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
            self.act2 = nn.ReLU()
    
            self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
            self.act3 = nn.ReLU()
    
            self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
            self.act4 = nn.ReLU()
    
            self.output = nn.Conv2d(feature_size, num_anchors*4, kernel_size=3, padding=1)
    
        def forward(self, x):
    
            out = self.conv1(x)
            out = self.act1(out)
    
            out = self.conv2(out)
            out = self.act2(out)
    
            out = self.conv3(out)
            out = self.act3(out)
    
            out = self.conv4(out)
            out = self.act4(out)
    
            out = self.output(out)
    
            # out is B x C x W x H, with C = 4*num_anchors
            out = out.permute(0, 2, 3, 1)
    
            return out.contiguous().view(out.shape[0], -1, 4)
    
    class ClassificationModel(nn.Module):
        def __init__(self, num_features_in, num_anchors=9, num_classes=80, prior=0.01, feature_size=256):
            super(ClassificationModel, self).__init__()
    
            self.num_classes = num_classes
            self.num_anchors = num_anchors
            
            self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
            self.act1 = nn.ReLU()
    
            self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
            self.act2 = nn.ReLU()
    
            self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
            self.act3 = nn.ReLU()
    
            self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
            self.act4 = nn.ReLU()
    
            self.output = nn.Conv2d(feature_size, num_anchors*num_classes, kernel_size=3, padding=1)
            self.output_act = nn.Sigmoid()
    
        def forward(self, x):
    
            out = self.conv1(x)
            out = self.act1(out)
    
            out = self.conv2(out)
            out = self.act2(out)
    
            out = self.conv3(out)
            out = self.act3(out)
    
            out = self.conv4(out)
            out = self.act4(out)
    
            out = self.output(out)
            out = self.output_act(out)
    
            # out is B x C x W x H, with C = n_classes + n_anchors
            out1 = out.permute(0, 2, 3, 1)
    
            batch_size, width, height, channels = out1.shape
    
            out2 = out1.view(batch_size, width, height, self.num_anchors, self.num_classes)
    
            return out2.contiguous().view(x.shape[0], -1, self.num_classes)
    
    class ResNet(nn.Module):
    
        def __init__(self, num_classes, block, layers):
            self.inplanes = 64
            super(ResNet, self).__init__()
            self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
            self.bn1 = nn.BatchNorm2d(64)
            self.relu = nn.ReLU(inplace=True)
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            self.layer1 = self._make_layer(block, 64, layers[0])
            self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
    
            if block == BasicBlock:
                fpn_sizes = [self.layer2[layers[1]-1].conv2.out_channels, self.layer3[layers[2]-1].conv2.out_channels, self.layer4[layers[3]-1].conv2.out_channels]
            elif block == Bottleneck:
                fpn_sizes = [self.layer2[layers[1]-1].conv3.out_channels, self.layer3[layers[2]-1].conv3.out_channels, self.layer4[layers[3]-1].conv3.out_channels]
    
            self.fpn = PyramidFeatures(fpn_sizes[0], fpn_sizes[1], fpn_sizes[2])
    
            self.regressionModel = RegressionModel(256)
            self.classificationModel = ClassificationModel(256, num_classes=num_classes)
    
            self.anchors = Anchors()
    
            self.regressBoxes = BBoxTransform()
    
            self.clipBoxes = ClipBoxes()
            
            self.focalLoss = losses.FocalLoss()
                    
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                    m.weight.data.normal_(0, math.sqrt(2. / n))
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
    
            prior = 0.01
            
            self.classificationModel.output.weight.data.fill_(0)
            self.classificationModel.output.bias.data.fill_(-math.log((1.0-prior)/prior))
    
            self.regressionModel.output.weight.data.fill_(0)
            self.regressionModel.output.bias.data.fill_(0)
    
            self.freeze_bn()
    
        def _make_layer(self, block, planes, blocks, stride=1):
            downsample = None
            if stride != 1 or self.inplanes != planes * block.expansion:
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes, planes * block.expansion,
                              kernel_size=1, stride=stride, bias=False),
                    nn.BatchNorm2d(planes * block.expansion),
                )
    
            layers = []
            layers.append(block(self.inplanes, planes, stride, downsample))
            self.inplanes = planes * block.expansion
            for i in range(1, blocks):
                layers.append(block(self.inplanes, planes))
    
            return nn.Sequential(*layers)
    
        def freeze_bn(self):
            '''Freeze BatchNorm layers.'''
            for layer in self.modules():
                if isinstance(layer, nn.BatchNorm2d):
                    layer.eval()
    
        def forward(self, inputs):
    
            if self.training:
                img_batch, annotations = inputs
            else:
                img_batch = inputs
                
            x = self.conv1(img_batch)
            x = self.bn1(x)
            x = self.relu(x)
            x = self.maxpool(x)
    
            x1 = self.layer1(x)
            x2 = self.layer2(x1)
            x3 = self.layer3(x2)
            x4 = self.layer4(x3)
    
            features = self.fpn([x2, x3, x4])
    
            regression = torch.cat([self.regressionModel(feature) for feature in features], dim=1)
    
            classification = torch.cat([self.classificationModel(feature) for feature in features], dim=1)
    
            anchors = self.anchors(img_batch)
    
            if self.training:
                return self.focalLoss(classification, regression, anchors, annotations)
            else:
                transformed_anchors = self.regressBoxes(anchors, regression)
                transformed_anchors = self.clipBoxes(transformed_anchors, img_batch)
    
                scores = torch.max(classification, dim=2, keepdim=True)[0]
    
                scores_over_thresh = (scores>0.05)[0, :, 0]
    
                if scores_over_thresh.sum() == 0:
                    # no boxes to NMS, just return
                    return [torch.zeros(0), torch.zeros(0), torch.zeros(0, 4)]
    
                classification = classification[:, scores_over_thresh, :]
                transformed_anchors = transformed_anchors[:, scores_over_thresh, :]
                scores = scores[:, scores_over_thresh, :]
    
                anchors_nms_idx = nms(torch.cat([transformed_anchors, scores], dim=2)[0, :, :], 0.5)
    
                nms_scores, nms_class = classification[0, anchors_nms_idx, :].max(dim=1)
    
                return [nms_scores, nms_class, transformed_anchors[0, anchors_nms_idx, :]]
    
    
    
    def resnet18(num_classes, pretrained=False, **kwargs):
        """Constructs a ResNet-18 model.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(num_classes, BasicBlock, [2, 2, 2, 2], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet18'], model_dir='.'), strict=False)
        return model
    
    
    def resnet34(num_classes, pretrained=False, **kwargs):
        """Constructs a ResNet-34 model.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(num_classes, BasicBlock, [3, 4, 6, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet34'], model_dir='.'), strict=False)
        return model
    
    
    def resnet50(num_classes, pretrained=False, **kwargs):
        """Constructs a ResNet-50 model.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(num_classes, Bottleneck, [3, 4, 6, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet50'], model_dir='.'), strict=False)
        return model
    
    def resnet101(num_classes, pretrained=False, **kwargs):
        """Constructs a ResNet-101 model.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(num_classes, Bottleneck, [3, 4, 23, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet101'], model_dir='.'), strict=False)
        return model
    
    
    def resnet152(num_classes, pretrained=False, **kwargs):
        """Constructs a ResNet-152 model.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(num_classes, Bottleneck, [3, 8, 36, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet152'], model_dir='.'), strict=False)
        return model
    View Code

     ResNet

    包含两种block:Basic block and Bottleneck block。Basic block没有用1x1卷机进行降维和升维,堆叠两层3x3 conv,适合于浅层的网络res18,res32,bottleneck操作进行了降维升维操作,适合深层网络res50,res101等。用bottleneck时会用到对identity进行downsample来使得identity和bottleneck输出维度一致。注意identity的add在relu之前。

    参考:https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

    import torch
    import torch.nn as nn
    from .utils import load_state_dict_from_url
    
    
    __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
               'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
               'wide_resnet50_2', 'wide_resnet101_2']
    
    
    model_urls = {
        'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
        'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
        'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
        'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
        'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
        'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
        'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
        'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
        'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
    }
    
    
    def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
        """3x3 convolution with padding"""
        return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                         padding=dilation, groups=groups, bias=False, dilation=dilation)
    
    
    def conv1x1(in_planes, out_planes, stride=1):
        """1x1 convolution"""
        return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
    
    
    class BasicBlock(nn.Module):
        expansion = 1
    
        def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                     base_width=64, dilation=1, norm_layer=None):
            super(BasicBlock, self).__init__()
            if norm_layer is None:
                norm_layer = nn.BatchNorm2d
            if groups != 1 or base_width != 64:
                raise ValueError('BasicBlock only supports groups=1 and base_width=64')
            if dilation > 1:
                raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
            # Both self.conv1 and self.downsample layers downsample the input when stride != 1
            self.conv1 = conv3x3(inplanes, planes, stride)
            self.bn1 = norm_layer(planes)
            self.relu = nn.ReLU(inplace=True)
            self.conv2 = conv3x3(planes, planes)
            self.bn2 = norm_layer(planes)
            self.downsample = downsample
            self.stride = stride
    
        def forward(self, x):
            identity = x
    
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
    
            if self.downsample is not None:
                identity = self.downsample(x)
    
            out += identity
            out = self.relu(out)
    
            return out
    
    
    class Bottleneck(nn.Module):
        # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
        # while original implementation places the stride at the first 1x1 convolution(self.conv1)
        # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
        # This variant is also known as ResNet V1.5 and improves accuracy according to
        # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
    
        expansion = 4
    
        def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                     base_width=64, dilation=1, norm_layer=None):
            super(Bottleneck, self).__init__()
            if norm_layer is None:
                norm_layer = nn.BatchNorm2d
            width = int(planes * (base_width / 64.)) * groups
            # Both self.conv2 and self.downsample layers downsample the input when stride != 1
            self.conv1 = conv1x1(inplanes, width)
            self.bn1 = norm_layer(width)
            self.conv2 = conv3x3(width, width, stride, groups, dilation)
            self.bn2 = norm_layer(width)
            self.conv3 = conv1x1(width, planes * self.expansion)
            self.bn3 = norm_layer(planes * self.expansion)
            self.relu = nn.ReLU(inplace=True)
            self.downsample = downsample
            self.stride = stride
    
        def forward(self, x):
            identity = x
    
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)
    
            out = self.conv3(out)
            out = self.bn3(out)
    
            if self.downsample is not None:
                identity = self.downsample(x)
    
            out += identity
            out = self.relu(out)
    
            return out
    
    
    class ResNet(nn.Module):
    
        def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
                     groups=1, width_per_group=64, replace_stride_with_dilation=None,
                     norm_layer=None):
            super(ResNet, self).__init__()
            if norm_layer is None:
                norm_layer = nn.BatchNorm2d
            self._norm_layer = norm_layer
    
            self.inplanes = 64
            self.dilation = 1
            if replace_stride_with_dilation is None:
                # each element in the tuple indicates if we should replace
                # the 2x2 stride with a dilated convolution instead
                replace_stride_with_dilation = [False, False, False]
            if len(replace_stride_with_dilation) != 3:
                raise ValueError("replace_stride_with_dilation should be None "
                                 "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
            self.groups = groups
            self.base_width = width_per_group
            self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
                                   bias=False)
            self.bn1 = norm_layer(self.inplanes)
            self.relu = nn.ReLU(inplace=True)
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            self.layer1 = self._make_layer(block, 64, layers[0])
            self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
                                           dilate=replace_stride_with_dilation[0])
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                           dilate=replace_stride_with_dilation[1])
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                           dilate=replace_stride_with_dilation[2])
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            self.fc = nn.Linear(512 * block.expansion, num_classes)
    
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
    
            # Zero-initialize the last BN in each residual branch,
            # so that the residual branch starts with zeros, and each residual block behaves like an identity.
            # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
            if zero_init_residual:
                for m in self.modules():
                    if isinstance(m, Bottleneck):
                        nn.init.constant_(m.bn3.weight, 0)
                    elif isinstance(m, BasicBlock):
                        nn.init.constant_(m.bn2.weight, 0)
    
        def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
            norm_layer = self._norm_layer
            downsample = None
            previous_dilation = self.dilation
            if dilate:
                self.dilation *= stride
                stride = 1
            if stride != 1 or self.inplanes != planes * block.expansion:
                downsample = nn.Sequential(
                    conv1x1(self.inplanes, planes * block.expansion, stride),
                    norm_layer(planes * block.expansion),
                )
    
            layers = []
            layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
                                self.base_width, previous_dilation, norm_layer))
            self.inplanes = planes * block.expansion
            for _ in range(1, blocks):
                layers.append(block(self.inplanes, planes, groups=self.groups,
                                    base_width=self.base_width, dilation=self.dilation,
                                    norm_layer=norm_layer))
    
            return nn.Sequential(*layers)
    
        def _forward_impl(self, x):
            # See note [TorchScript super()]
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            x = self.maxpool(x)
    
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)
    
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)
    
            return x
    
        def forward(self, x):
            return self._forward_impl(x)
    
    
    def _resnet(arch, block, layers, pretrained, progress, **kwargs):
        model = ResNet(block, layers, **kwargs)
        if pretrained:
            state_dict = load_state_dict_from_url(model_urls[arch],
                                                  progress=progress)
            model.load_state_dict(state_dict)
        return model
    
    
    def resnet18(pretrained=False, progress=True, **kwargs):
        r"""ResNet-18 model from
        `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
            progress (bool): If True, displays a progress bar of the download to stderr
        """
        return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
                       **kwargs)
    
    
    def resnet34(pretrained=False, progress=True, **kwargs):
        r"""ResNet-34 model from
        `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
            progress (bool): If True, displays a progress bar of the download to stderr
        """
        return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
                       **kwargs)
    
    
    def resnet50(pretrained=False, progress=True, **kwargs):
        r"""ResNet-50 model from
        `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
            progress (bool): If True, displays a progress bar of the download to stderr
        """
        return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
                       **kwargs)
    
    
    def resnet101(pretrained=False, progress=True, **kwargs):
        r"""ResNet-101 model from
        `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
            progress (bool): If True, displays a progress bar of the download to stderr
        """
        return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
                       **kwargs)
    
    
    def resnet152(pretrained=False, progress=True, **kwargs):
        r"""ResNet-152 model from
        `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
            progress (bool): If True, displays a progress bar of the download to stderr
        """
        return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
                       **kwargs)
    
    
    def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
        r"""ResNeXt-50 32x4d model from
        `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
            progress (bool): If True, displays a progress bar of the download to stderr
        """
        kwargs['groups'] = 32
        kwargs['width_per_group'] = 4
        return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
                       pretrained, progress, **kwargs)
    
    
    def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
        r"""ResNeXt-101 32x8d model from
        `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
            progress (bool): If True, displays a progress bar of the download to stderr
        """
        kwargs['groups'] = 32
        kwargs['width_per_group'] = 8
        return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
                       pretrained, progress, **kwargs)
    
    
    def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
        r"""Wide ResNet-50-2 model from
        `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
        The model is the same as ResNet except for the bottleneck number of channels
        which is twice larger in every block. The number of channels in outer 1x1
        convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
        channels, and in Wide ResNet-50-2 has 2048-1024-2048.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
            progress (bool): If True, displays a progress bar of the download to stderr
        """
        kwargs['width_per_group'] = 64 * 2
        return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
                       pretrained, progress, **kwargs)
    
    
    def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
        r"""Wide ResNet-101-2 model from
        `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
        The model is the same as ResNet except for the bottleneck number of channels
        which is twice larger in every block. The number of channels in outer 1x1
        convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
        channels, and in Wide ResNet-50-2 has 2048-1024-2048.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
            progress (bool): If True, displays a progress bar of the download to stderr
        """
        kwargs['width_per_group'] = 64 * 2
        return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
                       pretrained, progress, **kwargs)
    View Code
  • 相关阅读:
    后台线程处理数据,如何实时更新UI(datagridview)多线程同步问题
    DataGridView设置行高
    C#打开外部文件,如txt文件
    20120621第一天_复习与测试\04continue
    关于C#正则表达式MatchCollection类的总结
    关于sqlite中的一个错误 “database is locked"
    UI中 加个timer 写个while true的方法 不断获取run的对象
    最近帮公司开发一个邮件营销软件 用到XPTable 但找了很多方法 摸索了很久都不知道如何更新进度条 不过在国外的一个网站 终于找到答案了
    C# 简单的往txt中写日志,调试时很有用 【转】
    输入要匹配的内容和正则表达式规则 返来单个匹配的内容 正则表达式方法 常用
  • 原文地址:https://www.cnblogs.com/walter-xh/p/11286628.html
Copyright © 2020-2023  润新知