题意:有k个气球,n层楼,求出至少需要多少次实验能确定气球的硬度。气球不会被实验所“磨损”。
分析:
1、dp[i][j]表示第i个气球,测试j次所能确定的最高楼层。
2、假设第i-1个气球测试j-1次所确定的最高楼层是a,
若第i个气球在测试第一次的时候摔破了,那摔破所在的楼层b<=a+1---------dp[i - 1][j - 1] + 1。
若没摔破,则前i-1个球在此楼层也不会摔破,也就是说当前至少有i个完好的球可以测试以及j-1次机会可以继续测试-------------dp[i][j - 1]。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 100 + 10; const int MAXT = 10000 + 10; using namespace std; ULL dp[MAXN][MAXN]; void init(){ for(int i = 1; i < 64; ++i){ for(int j = 1; j < 64; ++j){ dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1] + 1; } } } int main(){ int k; ULL n; init(); while(scanf("%d%llu", &k, &n) == 2){ if(!k) return 0; k = Min(k, 63);//最多测试63次,所以最多需要63个气球 bool ok = false; for(int i = 0; i <= 63; ++i){ if(dp[k][i] >= n){ printf("%d\n", i); ok = true; break; } } if(!ok) printf("More than 63 trials needed.\n"); } return 0; }