• poj2478——Farey Sequence(欧拉函数)


    Farey Sequence
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 18507   Accepted: 7429

    Description

    The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are 
    F2 = {1/2} 
    F3 = {1/3, 1/2, 2/3} 
    F4 = {1/4, 1/3, 1/2, 2/3, 3/4} 
    F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5} 

    You task is to calculate the number of terms in the Farey sequence Fn.

    Input

    There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.

    Output

    For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn. 

    Sample Input

    2
    3
    4
    5
    0

    Sample Output

    1
    3
    5
    9

    题意:给出一个数n,要你求出在1-n中,互质的数有多少对;

    思路:这题属于欧拉函数的应用。1-n中互质数的对数就是等于与2互质的数的个数+与3互质的数的个数+与4互质的数的个数+....+与n互质的数的个数。(为什么没有1,因为一个数无法成对)
    所以这题就演变成了求2-n中所有数的欧拉函数的和,所以要用到欧拉函数的变形写法。
    因为是多组输入,所以要预处理一下,提前记录下n为1-1000000时的值。

    代码:
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<string>
     5 #include<cmath>
     6 #include<algorithm>
     7 #include<stack>
     8 #include<queue>
     9 #define eps 1e-7
    10 #define ll long long
    11 #define inf 0x3f3f3f3f
    12 #define pi 3.141592653589793238462643383279
    13 using namespace std;
    14 ll n,euler[1000006],sum[1000006];
    15 int main()
    16 {
    17     for(int i=1; i<=1000000; ++i) //初始化所有数的欧拉函数值为自己 
    18         euler[i] = i;
    19     for(int i=2; i<=1000000; ++i) //求所有数的欧拉函数值 
    20     {
    21         if(euler[i] == i) //根据公式 欧拉值(n) = n*(1-1/p1)(1-1/p2)...(1-1/pi)其中p为n的素因子
    22         //可知素数只有自己是自己的素因子,所以在遇到自己以前euler值没变,所以可以通过上面的语句得知euler[i]==i的为素数 
    23         {
    24             for(int j=i; j<=1000000; j+=i) //所有i的倍数乘上(1-1/i) 
    25                 euler[j] = euler[j]/i*(i-1);
    26         }
    27     }
    28     sum[1] = 0;
    29     for(int i=2; i<=1000000; ++i) //提前记录下每个数的答案 
    30     {
    31         sum[i] = sum[i-1] + euler[i];
    32     }
    33     while(scanf("%lld",&n)!=EOF)
    34     {
    35         if(!n) break;
    36         printf("%lld
    ",sum[n]);
    37     }
    38     return 0;
    39 }
     
  • 相关阅读:
    numpy数组中round, around, rint, ceil, floor, modf, trunc, fix
    基于KNN算法实现手写数字识别
    PM2.5预测(李宏毅机器学习hw_1)
    numpy的array和asarray
    iOS socket
    UIScrollView
    ios读取文件
    CGContext绘图
    UINavigationController和UITabBarController合用
    window下svn开机自动启动
  • 原文地址:https://www.cnblogs.com/tuyang1129/p/9322375.html
Copyright © 2020-2023  润新知