• Fuzzy模糊推导(Matlab实现)


    问题呈述

    在模糊控制这门课程中,学到了与模糊数学及模糊推理相关的内容,但是并不太清楚我们在选择模糊规则时应该如何处理,是所有的规则都需要由人手工选择,还是仅需要选择其中的一部分就可以了。因此,在课程示例的基础上做了如下的探究。

    设计一个以E、EC作为输入,U作为输出的模糊推理系统,令E、EC、U的隶属度函数为如下:

    1 0.6 0.2 0 0 0 0 0 0
    0.2 0.6 1 0.6 0.2 0 0 0 0
    0 0 0.2 0.6 1 0.6 0.2 0 0
    0 0 0 0 0.2 0.6 1 0.6 0.2
    0 0 0 0 0 0 0.2 0.6 1

    分别给定“中心十字规则”以及“最强对角线规则”作为初始规则,观察由此推导出的结果,以验证初始模糊规则库应该如何选择。

    结果

    中心十字规则

    其中,列索引代表E,行索引代表EC,中间的数据区域代表U。1代表负大(NB),2代表负中(NM),3代表零(Z),4代表正中(PB),5代表正大(PB)。

    最强对角线

    结果分析

    从上面的结果可以分析得出:

    1. 当提供部分规则时,其它规则可由这些规则导出;
    2. 强对角线规则作为初始规则时,推导效果较好;
    3. 在强对角线中,左下角和右上角的隶属度为零,这与人的主观判断相同,即“误差正大,但是误差速度为负大,即误差减小(趋于零)的速度最大”,此时不应有主观判断,即维持原态即可。

    Additional

    tight_subplot.m

    function ha = tight_subplot(Nh, Nw, gap, marg_h, marg_w)
    
    % tight_subplot creates "subplot" axes with adjustable gaps and margins
    %
    % ha = tight_subplot(Nh, Nw, gap, marg_h, marg_w)
    %
    %   in:  Nh      number of axes in hight (vertical direction)
    %        Nw      number of axes in width (horizontaldirection)
    %        gap     gaps between the axes in normalized units (0...1)
    %                   or [gap_h gap_w] for different gaps in height and width 
    %        marg_h  margins in height in normalized units (0...1)
    %                   or [lower upper] for different lower and upper margins 
    %        marg_w  margins in width in normalized units (0...1)
    %                   or [left right] for different left and right margins 
    %
    %  out:  ha     array of handles of the axes objects
    %                   starting from upper left corner, going row-wise as in
    %                   going row-wise as in
    %
    %  Example: ha = tight_subplot(3,2,[.01 .03],[.1 .01],[.01 .01])
    %           for ii = 1:6; axes(ha(ii)); plot(randn(10,ii)); end
    %           set(ha(1:4),'XTickLabel',''); set(ha,'YTickLabel','')
    
    % Pekka Kumpulainen 20.6.2010   @tut.fi
    % Tampere University of Technology / Automation Science and Engineering
    
    
    if nargin<3; gap = .02; end
    if nargin<4 || isempty(marg_h); marg_h = .05; end
    if nargin<5; marg_w = .05; end
    
    if numel(gap)==1; 
        gap = [gap gap];
    end
    if numel(marg_w)==1; 
        marg_w = [marg_w marg_w];
    end
    if numel(marg_h)==1; 
        marg_h = [marg_h marg_h];
    end
    
    axh = (1-sum(marg_h)-(Nh-1)*gap(1))/Nh; 
    axw = (1-sum(marg_w)-(Nw-1)*gap(2))/Nw;
    
    py = 1-marg_h(2)-axh; 
    
    ha = zeros(Nh*Nw,1);
    ii = 0;
    for ih = 1:Nh
        px = marg_w(1);
    
        for ix = 1:Nw
            ii = ii+1;
            ha(ii) = axes('Units','normalized', ...
                'Position',[px py axw axh], ...
                'XTickLabel','', ...
                'YTickLabel','');
            px = px+axw+gap(2);
        end
        py = py-axh-gap(1);
    end
    

    中心十字规则

    clc;
    E = [1,0.6,0,0,0,0,0,0,0;0.2,0.6,1,0.6,0.2,0,0,0,0;0,0,0.2,0.6,1,0.6,0.2,0,0;0,0,0,0,0.2,0.6,1,0.6,0.2;0,0,0,0,0,0,0.2,0.6,1];
    EC = E;
    U = E;
    
    
    % ----------------------------------------------------------------------------------
    % Calculate R
    % Deduct relationship
    % ----------------------------------------------------------------------------------
    R = zeros(81,9);
    for i = 1:5
    	A = E(i,:)';
    	B = EC(3,:);
    	C = U(i,:);
    	AB = min(repmat(A,1,9), repmat(B,9,1));
    	AB = reshape(AB, [81,1]);
    	RC = min(repmat(AB,1,9), repmat(C, 81,1));
    	R = max(R,RC);
    end
    
    for i = [1,2,4,5]
    	A = E(3,:)';
    	B = EC(i,:);
    	C = U(i,:);
    	AB = min(repmat(A,1,9), repmat(B,9,1));
    	AB = reshape(AB, [81,1]);
    	RC = min(repmat(AB,1,9), repmat(C, 81,1));
    	R = max(R,RC);
    end
    
    % ----------------------------------------------------------------------------------
    % Calculate C
    % Relationship induction
    % ----------------------------------------------------------------------------------
    
    C = zeros(9,5,5);
    for i = 1:5
    	for j = 1:5
    		A = E(i,:)';
    		B = EC(j,:);
    		AB = min(repmat(A,1,9), repmat(B,9,1));
    		AB = reshape(AB, [81,1]);
    		C(:,i,j) = max(min(repmat(AB, 1, 9), R));
    	end
    end
    
    % ----------------------------------------------------------------------------------
    % Plot
    % ----------------------------------------------------------------------------------
    figure(2);clf;
    x = (1:9)/9;
    ha = tight_subplot(5,5,[.0 .0],[.0 .0],[.0 .0]);
    for i = 1:5
    	for j = 1:5
    		axes(ha(i*5-5+j));
    		h = plot(x, C(:,i,j));
    		ylim([0,1.2]);
    		xlim([min(x), max(x)]);
    		set(gca,'XTick',[])
    		set(gca,'YTick',[])
    	end
    end
    

    最强对角线规则

    clc;
    E = [1,0.6,0,0,0,0,0,0,0;0.2,0.6,1,0.6,0.2,0,0,0,0;0,0,0.2,0.6,1,0.6,0.2,0,0;0,0,0,0,0.2,0.6,1,0.6,0.2;0,0,0,0,0,0,0.2,0.6,1];
    EC = E;
    U = E;
    
    
    % ----------------------------------------------------------------------------------
    % Calculate R
    % Deduct relationship
    % ----------------------------------------------------------------------------------
    R = zeros(81,9);
    for i = 1:5
    	A = E(i,:)';
    	B = EC(i,:);
    	C = U(i,:);
    	AB = min(repmat(A,1,9), repmat(B,9,1));
    	AB = reshape(AB, [81,1]);
    	RC = min(repmat(AB,1,9), repmat(C, 81,1));
    	R = max(R,RC);
    end
    
    
    % ----------------------------------------------------------------------------------
    % Calculate C
    % Relationship induction
    % ----------------------------------------------------------------------------------
    
    C = zeros(9,5,5);
    for i = 1:5
    	for j = 1:5
    		A = E(i,:)';
    		B = EC(j,:);
    		AB = min(repmat(A,1,9), repmat(B,9,1));
    		AB = reshape(AB, [81,1]);
    		C(:,i,j) = max(min(repmat(AB, 1, 9), R));
    	end
    end
    
    % ----------------------------------------------------------------------------------
    % Plot
    % ----------------------------------------------------------------------------------
    figure(2);clf;
    x = (1:9)/9;
    ha = tight_subplot(5,5,[.0 .0],[.0 .0],[.0 .0]);
    for i = 1:5
    	for j = 1:5
    		axes(ha(i*5-5+j));
    		h = plot(x, C(:,i,j));
    		ylim([0,1.2]);
    		xlim([min(x), max(x)]);
    		set(gca,'XTick',[])
    		set(gca,'YTick',[])
    	end
    end
    

    模糊合成的定义

    (P)(U imes V) 上的模糊关系,(Q)(V imes W)上的模糊关系,则(R)(U imes W)上的模糊关系,它是(Pcirc Q)的合成,其隶属函数被定义为

    [mu_{R}left(u,w ight)Leftrightarrowmu_{P,Q}left(u,w ight)=vee_{vin V}left{ mu_{P}left(u,v ight)wedgemu_{Q}left(v,w ight) ight} ]

    若式中牌子(wedge)代表“取小–(min)”,(vee)代表“取大–(max)”,这种合成关系即为最大值(cdot)最小值合成,合成关系(R=Pcirc Q)

    示例:

    [A=egin{bmatrix}{0.4} & {0.5} & {0.6}\ {0.1} & {0.2} & {0.3} end{bmatrix},B=egin{bmatrix}0.1 & 0.2\ 0.3 & 0.4\ 0.5 & 0.6 end{bmatrix}. ]

    (Acirc B=egin{bmatrix}0.5 & 0.6\ 0.3 & 0.3 end{bmatrix}), (Bcirc A=egin{bmatrix}{0.1} & {0.2} & {0.2}\ {0.3} & {0.3} & {0.3}\ {0.4} & {0.5} & {0.5} end{bmatrix})

    有定义为

    [A imes B = A^mathrm{T}circ B. ]

    模糊推导示例

    已知一个双输入单输出的模糊系统,其输入量为(x)(y),输出量为(z),其输入输出的关系可用如下两条模糊规则描述:

    • (R_{1}):如果(x)(A_{1}) and (y)(B_{1}),则(z)(C_{1})

    • (R_{2}):如果(x)(A_{2}) and (y)(B_{2}),则(z)(C_{2})

    [egin{array}{ccc} {A_{1}}=frac{1}{{a_{1}}}+frac{{0.5}}{{a_{2}}}+frac{0}{{a_{3}}} & {B_{1}}=frac{1}{{b_{1}}}+frac{{0.6}}{{b_{2}}}+frac{{0.2}}{{b_{3}}} & {C_{1}}=frac{1}{{c_{1}}}+frac{{0.4}}{{c_{2}}}+frac{0}{{c_{3}}}\ {A_{2}}=frac{0}{{a_{1}}}+frac{{0.5}}{{a_{2}}}+frac{1}{{a_{3}}} & {B_{2}}=frac{{0.2}}{{b_{1}}}+frac{{0.6}}{{b_{2}}}+frac{1}{{b_{3}}} & {C_{2}}=frac{0}{{c_{1}}}+frac{{0.4}}{{c_{2}}}+frac{1}{{c_{3}}} end{array} ]


    (感觉被恶心到了,不知道为什么这儿的array环境始终出不来)

    现已知输入(x)(A'), (y)(B’),试求输出量。

    [egin{array}{cc} A'=frac{{0.5}}{{a_{1}}}+frac{1}{{a_{2}}}+frac{{0.5}}{{a_{3}}} & B'=frac{{0.6}}{{b_{1}}}+frac{1}{{b_{2}}}+frac{{0.6}}{{b_{3}}}\ end{array} ]


    [egin{aligned} {A_{1}} imes{B_{1}} & =A_{1}^{T}circ{B_{1}}={left[{egin{array}{ccc} 1 & {0.5} & 0end{array}} ight]^{T}}left[{egin{array}{ccc} 1 & {0.6} & {0.2}end{array}} ight]\ & =left[{egin{array}{ccc} 1 & {0.6} & {0.2}\ {0.5} & {0.5} & {0.2}\ 0 & 0 & 0 end{array}} ight] end{aligned} ]

    将其按行展开得(把矩阵压扁为一行向量)

    [{R_{1}}=ar{R}_{{A_{1}} imes{B_{1}}}^{T}wedge{C_{1}}=left[{egin{array}{c} 1\ {0.6}\ {0.2}\ {0.5}\ {0.5}\ {0.2}\ 0\ 0\ 0 end{array}} ight]wedgeleft[{egin{array}{ccc} 1 & {0.4} & 0end{array}} ight]=left[{egin{array}{ccc} 1 & {0.4} & 0\ 1 & {0.4} & 0\ {0.2} & {0.2} & 0\ {0.5} & {0.4} & 0\ {0.5} & {0.4} & 0\ {0.2} & {0.2} & 0\ 0 & 0 & 0\ 0 & 0 & 0\ 0 & 0 & 0 end{array}} ight] ]

    同理:

    [{R_{2}}=ar{R}_{{A_{2}} imes{B_{2}}}^{T}wedge{C_{2}}=left[{egin{array}{ccc} 0 & 0 & 0\ 0 & 0 & 0\ 0 & 0 & 0\ 0 & {0.2} & {0.2}\ 0 & {0.4} & {0.5}\ 0 & {0.4} & {0.5}\ 0 & {0.2} & {0.2}\ 0 & {0.4} & {0.6}\ 0 & {0.4} & 1 end{array}} ight] ]

    总的蕴含关系为

    [R={R_{1}}cup{R_{2}}=left[{egin{array}{ccc} 1 & {0.4} & 0\ {0.6} & {0.4} & 0\ {0.2} & {0.2} & 0\ {0.5} & {0.4} & {0.2}\ {0.5} & {0.4} & {0.5}\ {0.2} & {0.4} & {0.5}\ 0 & {0.2} & {0.2}\ 0 & {0.4} & {0.6}\ 0 & {0.4} & 1 end{array}} ight] ]

    计算输入量的模糊集合

    [A' ext{ and }B'=A' imes B'=left[{egin{array}{c} {0.5}\ 1\ {0.5} end{array}} ight]wedgeleft[{egin{array}{ccc} {0.6} & 1 & {0.6}end{array}} ight]=left[{egin{array}{ccc} {0.5} & {0.5} & {0.5}\ {0.6} & 1 & {0.6}\ {0.5} & {0.5} & {0.5} end{array}} ight] ]

    [ar{R}_{A' imes B'}^{T}=left[{egin{array}{ccccccccc} {0.5} & {0.5} & {0.5} & {0.6} & 1 & {0.6} & {0.5} & {0.5} & {0.5}end{array}} ight] ]

    [C'=ar{R}_{A' imes B'}circ R=left[{egin{array}{ccc} {0.5} & {0.4} & {0.5}end{array}} ight] ]

    [C'=frac{{0.5}}{{c_{1}}}+frac{{0.4}}{{c_{2}}}+frac{{0.5}}{{c_{3}}} ]

  • 相关阅读:
    ES6展开运算符的10个用法
    用react脚手架新建项目
    第六章 组件 56 组件-组件中的data
    第六章 组件 55 组件-使用components定义私有组件
    第六章 组件 54 组件-创建组件的方式3
    第六章 组件 53 组件-创建组件的方式2
    第六章 组件 52 组件-创建组件的方式1
    第六章 组件 51 组件化和模块化的区别以及组件的定义方式
    第五章 动画 50 动画-transition-group中appear和tag属性的作用
    第五章 动画 49 动画-实现列表删除和删除时候的动画效果
  • 原文地址:https://www.cnblogs.com/troy-daniel/p/FuzzyReasoning.html
Copyright © 2020-2023  润新知