• tornado硬件管理系统-数据存储与表格实时监控(8)


    数据存储:

    import mysql.connector
    from sqlalchemy import create_engine  # 创建引擎
    from sqlalchemy.orm import sessionmaker  # 创建会话
    
    
    class ORM:
        # 会话方法
        @classmethod
        def db(cls):
            mysql_configs = dict(
                db_host="127.0.0.1",  # 主机地址
                db_name="monitor",  # 数据库名称
                db_port=3306,  # 数据库端口
                db_user="root",  # 数据库用户
                db_pwd="t"  # 数据库密码
            )
            link = "mysql+mysqlconnector://{db_user}:{db_pwd}@{db_host}:{db_port}/{db_name}?charset=utf8".format(
                **mysql_configs
            )
            # 创建引擎
            engine = create_engine(
                link,
                encoding="utf-8",
                echo=False,
                pool_size=100,
                pool_recycle=10,
                connect_args={'charset': 'utf8'}
            )
            # 创建会话
            Session = sessionmaker(
                bind=engine,
                autocommit=False,
                autoflush=True,
                expire_on_commit=False
            )
            return Session()
    View Code

    日志函数:

    # -*- coding: utf-8 -*-
    import time
    import datetime
    from app.models.models import Cpu, Mem, Swap
    from app.tools.monitor import Monitor
    from app.tools.orm import ORM
    
    
    # 日期时间函数
    def dt():
        now = datetime.datetime.now()
        _date_time = now.strftime("%Y-%m-%d %H:%M:%S")
        _date = now.strftime("%Y-%m-%d")
        _time = now.strftime("%H:%M:%S")
        return _date, _time, _date_time
    
    
    # 定义保存日志的函数
    def save_log():
        m = Monitor()
        cpu_info, mem_info, swap_info = m.cpu(), m.mem(), m.swap()
        _date, _time, _date_time = dt()
        # 1.创建会话
        session = ORM.db()
        try:
            # CPU
            cpu = Cpu(
                percent=cpu_info["percent_avg"],
                create_date=_date,
                create_time=_time,
                create_dt=_date_time
            )
            # 内存
            mem = Mem(
                percent=mem_info['percent'],
                total=mem_info['total'],
                used=mem_info['used'],
                free=mem_info['free'],
                create_date=_date,
                create_time=_time,
                create_dt=_date_time
            )
            # 交换分区
            swap = Swap(
                percent=swap_info['percent'],
                total=swap_info['total'],
                used=swap_info['used'],
                free=swap_info['free'],
                create_date=_date,
                create_time=_time,
                create_dt=_date_time
            )
            # 提交至数据块
            session.add(cpu)
            session.add(mem)
            session.add(swap)
        except Exception as e:
            session.rollback()  # 如果发送异常回滚
        else:
            session.commit()  # 没有异常提交
        finally:
            session.close()  # 无论是否发生异常关闭
    
    
    if __name__ == "__main__":
        while True:
            _date, _time, _date_time = dt()
            print("开始时间:{}".format(_date_time))
            save_log()
            print("结束时间:{}".format(_date_time))
            time.sleep(5)  # 每隔5秒采集一次
    View Code

    可视化折线图处理:

    # -*- coding: utf-8 -*-
    import datetime
    from pyecharts import Liquid, Gauge, Pie, Line
    
    
    class Chart(object):
        。。。。。。。
    
        # 折线面积图
        def line_html(self, title, key, val, color=None):
            line = Line(
                title,
                title_pos="center",
                width="100%",
                height=300
            )
            line.add(
                "",
                key,
                val,
                mark_point=["average", "max", "min"],
                mark_line=["average", "max", "min"],
                area_color=color,
                line_opacity=0.2,
                area_opacity=0.4,
                is_datazoom_show=True,
                datazoom_range=[0, 100],
                symbol=None
            )
            return line.render_embed()
    
        # 折线面积图
        def line_three_html(self, title, key, val_min, val_max, val_avg):
            line = Line(
                title,
                title_pos="left",
                width="100%",
                height=300
            )
            line.add(
                "最小值",
                key,
                val_min,
                mark_point=["average", "max", "min"],
                is_datazoom_show=True,
                datazoom_range=[0, 100],
                is_smooth=True
            )
            line.add(
                "最大值",
                key,
                val_max,
                mark_point=["average", "max", "min"],
                is_datazoom_show=True,
                datazoom_range=[0, 100],
                is_smooth=True
            )
            line.add(
                "平均值",
                key,
                val_avg,
                mark_point=["average", "max", "min"],
                is_datazoom_show=True,
                datazoom_range=[0, 100],
                is_smooth=True
            )
            return line.render_embed()
    
        # 日期时间方法
        @property
        def dt(self):
            return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

    视图:

    # -*- coding: utf-8 -*-
    import tornado.gen
    import tornado.concurrent
    from app.views.views_common import CommonHandler
    from app.tools.monitor import Monitor
    from app.tools.chart import Chart
    
    
    # 定义一个首页视图
    class IndexHandler(CommonHandler):
        @tornado.gen.coroutine
        def get(self, *args, **kwargs):
            yield self.get_response()
    
        @tornado.concurrent.run_on_executor
        def get_response(self):
            m = Monitor()
            c = Chart()
            cpu_info = m.cpu()
            mem_info = m.mem()
            swap_info = m.swap()
            net_info = m.net()
            disk_info = m.disk()
            net_pie = [
                c.pie_two_html(
                    "net{}".format(k + 1),
                    "{}网卡信息".format(v["name"]),
                    "收发包数统计",
                    "收发字节统计",
                    ["收包数", "发包数"],
                    ["收字节", "发字节"],
                    [v["packets_recv"], v["packets_sent"]],
                    [v["bytes_recv"], v["bytes_sent"]],
                )
                for k, v in enumerate(net_info) if v["packets_recv"] and v['packets_sent']
            ]
            self.html("index.html",
                      data=dict(
                          title="系统监控",
                          cpu_info=cpu_info,
                          mem_info=mem_info,
                          swap_info=swap_info,
                          net_info=net_info,
                          disk_info=disk_info,
                          cpu_liquid=c.liquid_html("cpu_avg", "CPU平均使用率", cpu_info['percent_avg']),
                          mem_gauge=c.gauge_html("mem", "内存使用率", mem_info['percent']),
                          swap_gauge=c.gauge_html("swap", "交换分区使用率", mem_info['percent']),
                          net_pie=net_pie,
                      )
                      )
    View Code

    路由配置:

    # -*- coding: utf-8 -*-
    from sockjs.tornado import SockJSRouter  # 定义路由的
    from app.views.views_index import IndexHandler as index  # 导入系统监控视图
    from app.views.views_log import LogHandler as log  # 导入日志监控视图
    from app.views.views_real_time import RealTimeHandler as real_time
    from app.views.views_test import TestHandler as test
    
    # 配置路由视图映射规则
    urls = [
               (r"/", index),
               (r"/test/", test),
               (r"/log/", log),
           ] + SockJSRouter(real_time, "/real/time").urls

    结果:

     

  • 相关阅读:
    Java泛型-类型擦除
    static加载问题
    当使用System,out.println()打印一个对象是自动调用toString方法
    python——变量作用域及嵌套作用域
    Python 构造函数、 Python 析构函数、Python 垃圾回收机制
    python——type()创建类
    HTML4,HTML5,XHTML 之间有什么区别?
    斐波那契数列算法分析
    python——iterator迭代器|iterator详解——20140918|
    django model filter 条件过滤,及多表连接查询、反向查询,某字段的distinct
  • 原文地址:https://www.cnblogs.com/topass123/p/13125354.html
Copyright © 2020-2023  润新知