Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
Given two integers n and m, your goal is to compute the value of Fn mod m.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000) and m(where 0<m<=10000). The end-of-file is denoted by a single line containing the number −1 -1.
Output
For each test case, print the value of Fn%m one pre line, omit any leading zeros.
Sample Input
0 10000 9 10000 999999999 10000 1000000000 10000 -1 -1
Sample Output
0 34 626 6875
#include<iostream> #include<cstring> using namespace std; struct mat{ int matri[3][3]; }; inline mat MatMat(mat a,mat e,int m) { mat t; for(int i=0;i<2;++i) for(int k=0;k<2;++k) { t.matri[i][k]=0; for(int j=0;j<2;++j) t.matri[i][k]=(t.matri[i][k]+a.matri[i][j]*e.matri[j][k])%m; } return t; } inline int quick_mod(int q,int m) { mat I,a; a.matri[0][0]=0; a.matri[1][1]=a.matri[0][1]=a.matri[1][0]=1; I.matri[0][0]=I.matri[1][1]=1; I.matri[0][1]=I.matri[1][0]=0; while (q) { if(q&1) I=MatMat(a,I,m); a=MatMat(a,a,m); q>>=1; } return I.matri[1][1]; } //二分快速幂 int main() { int m,n; while(cin>>n>>m && n!=-1) { if(n==0 || n==1) { cout<<n<<endl; continue; } cout<<quick_mod(n-1,m)<<endl; } return 0; }