从前有一户夫妻,他们生了两个孩子。已知其中一个是女孩,那么另一个孩子也是女孩的概率是多少呢?
这是一道概率论课本上的经典问题,一开始的时候,很多人会觉得两个孩子的性别是独立事件,我们知道其中一个孩子的性别,应该对另一个孩子没有影响。但实际上并不是这样,我们可以列出两个孩子性别的所有可能:
从上面这个表格里,我们可以看出来,两个孩子的性别组合一共有4种。其中至少有一个女孩的是三种,而这三种当中,两个孩子都是女孩的有一种。所以答案就是1/3。
除了表格列举出所有情况之外,我们还可以通过条件概率来计算。
我们直接套用条件概率的公式:假设A事件代表两个孩子中有一个是女孩,B事件是两个孩子都为女孩。显然,我们要求的就是P(B|A)。
根据公式:
在这题当中A事件发生,B一定发生,所以P(AB) = P(A).
我们知道,两个孩子的性别是独立事件,其中有一个为女孩的概率等于1减去两个都是男孩的概率,两个都是男孩的概率等于
所以至少有一个女孩的概率等于3/4。同理,两个都为女孩的概率是1/4。
所以,我们套入公式
所以另一个孩子也是女孩的概率是1/3。
这个答案的计算过程没什么问题,我想大家应该都能看明白,但是不知道会有多少人觉得奇怪。为什么答案不是 1/2 呢?难道两个孩子的性别不是独立的吗?一个孩子是女孩和另一个孩子是男是女应该没有联系呀?
在我们回答这个问题之前,我们先来看另一个问题。
还是之前题目里的夫妻,还是那两个孩子(至少有一个是女孩)。不同的是,假设有一天我们在公园碰见了这一对夫妻。不过,与此同时,夫妻还带了一个孩子。这个孩子是一个女孩,那么,请问,另一个孩子也是女孩的概率是多大?
答案是 1/3 呢还是 1/2 呢?
这一次答案是1/2。等等,好像有点不太对劲。我们之前一通分析,用上各种公式进行计算,得到的结果明明是1/3,为什么这里就变成 1/2 了呢?这两道题难道不是一样的吗?
我们看到了一个女孩,求另一个也是女孩,和已知一个是女孩,求两个都是女孩,不是一回事吗?
关于这一点,我们直观上有很多种理解方式。
第一种,一开始题目中已知有一个孩子是女孩。这个约束是针对两个孩子的,当我们看到女孩的时候,两个孩子当中有一个是女孩的条件被达成了。那么对于另一个孩子而言,它就从条件概率的约束当中恢复了过来,它从条件概率又变成了自然概率,那么自然,剩下一个孩子是女孩的概率成了 1/2 。
我们遇见一个女孩的概率是:
我们遇见一个女孩的条件下,两个都是女孩的概率是
这里潜在的信息是,我们在公园遇见一个孩子,他是男是女的概率是不同的。我们遇见了女孩,会改变剩下一个孩子是女孩的概率。也就是说,遇见了女孩这个信息,提升了两个孩子都是女孩的概率,降低了另一个孩子是男孩的概率。两者一增一减,最后刚好都等于1/2。
这样理解都行得通,但还是没有解决我们之前的疑惑,为什么看起来完全一样的两件事,得到的结果不同呢?就因为我们看到了其中的一个孩子吗?可是我们看到孩子,与孩子的性别的概率应该无关才对。
会有这些疑问并不奇怪,原因也很简单,因为我们忽略了一点:我们在公园碰见了一个孩子的时候,带来了额外的信息。也就是说,两个孩子当中,碰见一个孩子是女孩,和两个孩子当中有一个是女孩,这是两件事。因为碰见了一个孩子带来了额外的信息,虽然这个孩子是女孩,貌似和我们条件概率里的条件一样。
在这个问题当中,这个隐藏信息是我们对孩子的区分。我们看孩子之前,两个孩子是一体的,我们看了一眼之后,这两个孩子就区分开来了。我们看之前,这是两个孩子,看了之后,就成了我们看过的孩子和没看过的孩子。从物理学上来看,这两者的熵是不同的。
如果你还在纠结”观察“这个动作,我们不妨假设另一种情况:假设这对夫妻并没有带孩子来公园,我们没有见到孩子。我们和夫妻攀谈,他们告诉我们,年长的孩子是女孩。请问剩下一个是女孩的概率是多少?1/2。如果他说喜欢吃糖的是女孩,剩下一个孩子是女孩的概率是多少?1/2。
不论这对夫妻怎么表述,只要他告诉我们一个信息,一个能够将这两个孩子区分开的信息,那么,另一个孩子是男是女都会从条件概率的束缚下脱离出来,恢复自然概率。
我们忽略了这个信息来看问题,就会觉得概率时大时小,变幻莫测。这也是很多人觉得概率论非常神奇违反直觉的原因。
这个时候我们需要冷静,先从疑问当中抽身,仔细审视一下自己的推理的过程。很多时候,疑惑当中都是因为有一些潜在的因素被我们忽略了。只要我们梳理清楚所有的变量和信息,那么疑团也就迎刃而解。
我在思考这些概率问题的时候,总会想起明朝心学大家王阳明的一段话。他说:你未看此花时,此花与汝心同归于寂。你来看此花时,则此花颜色一时明白起来。
大家结合上文的问题,再来思索这段话,是否有体会到几分真意呢?
今天的文章就到这里,如果喜欢,请顺手点个关注吧