• 计算几何-园的问题


    一.圆与圆的位置关系

      1.两圆交的面积  两圆如果相交,则交的面积是一个弓形。考虑到两个圆相交的面积只与圆心距相关。我们可以对圆进行平移旋转,使得两个圆的圆心分别为(0,0)和(d,0).

    模板如下:

    double CircleCrossArea(Circle A,Circle B){
    	double r1 = A.r, r2 = B.r;
    	double d = Dis(A.o, B.o),r=min(r1,r2);
    	if (RlCmp(d, r1 + r2) >= 0)
    		return 0;        //相离或者外切
    	if (RlCmp(d, abs(r1 - r2)) <= 0)
    		return pi*r*r;       //内含
    	//将r1放在圆心
    	double x1 = (d*d + r1*r1 - r2*r2) / (2 * d);
    	double s1 = x1*sqrt(r1*r1 - x1*x1) - r1*r1*acos(x1/r1);
    	//将r2放在圆心
    	double x2 = (d*d + r2*r2 - r1*r1) / (2 * d);
    	double s2 = x2*sqrt(r2*r2 - x2*x2) - r2*r2*acos(x2 / r2);
    	return abs(s1 + s2);
    }
    

     2.两圆交点 两圆位置关系一共有5中。我们将其归纳为3种,0个交点,个交点,1个交点,2个交点.并且将重合也看为0个交点,模板如下:

    int CirCleCrossCircle(Circle A,Circle B,Point&p1,Point&p2){
    	double d = Dis(A.o, B.o);     //圆心距
    	double r1 = A.r, r2 = B.r;
    	if (RlCmp(d, r1 + r2) > 0||RlCmp(d,abs(r1-r2))<0)
    		return 0;     //内含或者相离
    	if (A.o == B.o&&RlCmp(r1, r2) == 0)
    		return 0;     //重合
    	double cos_angle = (r1*r1 + d*d - r2*r2) / (2 * r1*d);  //余弦定理
    	double sin_angle = sqrt(1 - cos_angle*cos_angle);       //求sin
    	Point q = (r1*cos_angle/d)*(B.o - A.o) + A.o; //交点连线与圆心连线的交点
    	Point pt = (1.0/d)*Point(A.o.y - B.o.y, B.o.x - A.o.x);   //交点方向的单位向量
    	p1 = q + (r1*sin_angle)*pt;
    	p2 = q - (r1*sin_angle)*pt;
    	if (p1 == p2)
    		return 1;
    	return 2;
    }
    

     3.直线与圆相交问题 直线与圆相交,只需将直线到圆心距离与圆半径比较就可以。

    //圆C与直线AB相交
    int CircleCrossLine(Point A,Point B,Circle C,Point&p1,Point&p2){
    	double d = PointToLine(C.o, A, B);
    	double r = C.r;
    	if (RlCmp(r, d)<0)
    		return 0;     //直线与圆相离
    	Point q = PointProjLine(C.o, A, B);
    	double l = sqrt(r*r - d*d);
    	Point s = (1.0/Dis(A, B))*(B - A);  //AB单位方向向量
    	p1 = q + l*s;
    	p2 = q - l*s;
    	if (RlCmp(d, r) == 0)
    		return 1;
    	return 2;
    }
    
  • 相关阅读:
    ResourceManager总体架构
    Yarn聚合日志
    Hive参数配置方法
    Hive任务日志及日志调试
    bugku web web3
    bugku web 矛盾
    bugku web web基础
    Bugku 杂项 眼见非实
    Bugku 杂项 啊哒
    JarvisOJ Basic Help!!
  • 原文地址:https://www.cnblogs.com/td15980891505/p/5756024.html
Copyright © 2020-2023  润新知