• PAT A1128 N Queens Puzzle (20 分)——数学题


    The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)

    Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q1​​,Q2​​,,QN​​), where Qi​​ is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.

    8q.jpg 9q.jpg
    Figure 1   Figure 2

    Input Specification:

    Each input file contains several test cases. The first line gives an integer K (1<K200). Then K lines follow, each gives a configuration in the format "Q1​​ Q2​​ ... QN​​", where 4N1000 and it is guaranteed that 1Qi​​N for all i=1,,N. The numbers are separated by spaces.

    Output Specification:

    For each configuration, if it is a solution to the N queens problem, print YES in a line; or NO if not.

    Sample Input:

    4
    8 4 6 8 2 7 1 3 5
    9 4 6 7 2 8 1 9 5 3
    6 1 5 2 6 4 3
    5 1 3 5 2 4
    

    Sample Output:

    YES
    NO
    NO
    YES
    
     
    #include <stdio.h>
    #include <algorithm>
    #include <math.h>
    using namespace std;
    int k,n;
    int a[1010];
    int main(){
      scanf("%d",&k);
      for(int i=0;i<k;i++){
        fill(a,a+1010,0);
        scanf("%d",&n);
        int flag=0;
        for(int j=1;j<=n;j++){
          int tmp;
          scanf("%d",&tmp);
          if(flag==0){
            a[j]=tmp;
          for(int q=1;q<j;q++){
            if(abs(j-q)==abs(a[j]-a[q]) || a[j]==a[q]){
              flag=1;
              break;
            }
          }}
          else continue;
        }
        printf("%s
    ",flag==1?"NO":"YES");
      }
    }

    注意点:测试点1是有两个在同一行,所以这题是不仅判断对角线,还有同行,但肯定不会同列。

    ---------------- 坚持每天学习一点点
  • 相关阅读:
    leetcode第四题
    解决Hystrix主线程结束,子线程拿不到request
    RabbitMQ如何保证消息的顺序性+解决消息积压+设计消息队列中间件
    RabbitMQ 如何保证消息不丢失?
    redis布隆过滤器的使用
    PageHelper自定义count
    mysqlbinlog 工具分析binlog日志
    linuxubuntu常用命令
    MySQL 常用命令
    Ubuntu 16.04 安装 Apache, MySQL, PHP7
  • 原文地址:https://www.cnblogs.com/tccbj/p/10409234.html
Copyright © 2020-2023  润新知