前几天认把感知机这一章读完了,顺带做了点笔记
现在把笔记做第三次的整理
(不得不说博客园的LaTex公式和markdown排版真的不太舒服,该考虑在服务器上建一个博客了)
零、总结
- 适用于具有线性可分的数据集的二分类问题,可以说是很局限了
- 感知机本质上是一个分离超平面
- 在向量维数(特征数)过高时,选择对偶形式算法
在向量个数(样本数)过多时,应选择原始算法 - 批量梯度下降和随机梯度下降的区别和优势
参考链接:随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比
- 批量梯度下降(BGD, Batch Gradient Descent)
$ heta leftarrow heta + eta sum frac{partial L}{partial heta}$
即多次做全局样本的参数更新
缺点:计算耗时
优点:可以趋向全局最优,受数据噪音影响少 - 随机梯度下降(SGD, Srochastic Gradient Descent)
$ heta leftarrow heta + eta frac{partial L}{partial heta}$
即多次做单个样本的参数更新
缺点:训练耗时较短
优点:不一定趋向全局最优(往往是最优/较优,单峰问题除外),受数据噪音影响大
一、模型
输入空间 $ mathcal{X} subseteq R^n $
输出空间 $ mathcal{Y} subseteq {-1, +1} $
假设空间 $ mathcal{F} subseteq {f|f(x) = omega cdot x + b} $
参数 $ omega in R^n, b in R $
模型 $ f(x) = sign(omega cdot x + b) $
其中
符号函数为
线性方程
$ omega cdot x + b $
可以表示为特征空间 $ R^n $中的一个分离超平面
二、策略
(定义的损失函数,并极小化损失函数)
(注意损失函数非负的性质)
为了使损失函数更容易优化,我们选择误分类点到超平面的距离作为损失函数
任意向量(x in R^n)距分离超平面的距离为
$ S=frac{1}{|omega|}|omega cdot x + b| $
接下来优化一下这个距离,让它更好的成为一个损失函数
- 为了连续可导,去绝对值
$ S=-frac{1}{|omega|} y_i(omega cdot x + b) $ - 去掉不相关的系数(避免浪费计算),得到
$ L(omega, b)=-sum_{x_i in M} y_i(omega cdot x + b) ( 其中) M $为误分类点集合
三、算法
(如何实现最优化问题)
注意最终训练出的模型参数的值取决于初值和误分类点的选取,所以一般值不同
为了极小化损失函数,我们采用梯度下降的方法
- 原始形式算法
- 赋初值 $ omega leftarrow 0 , b leftarrow 0 $
- 选取数据点 $ (x_i, y_i) $
- 判断该数据点是否为当前模型的误分类点,即判断若$ y_i(omega cdot x + b) <=0 $
则更新
- 对偶形式算法
注意到原始形式算法中,最终训练好的模型参数是这样的,其中$ n_i $表示在第i个数据点上更新过几次
于是我们可以作出以下简化
- 赋初值 $ n leftarrow 0, b leftarrow 0 $
- 选取数据点 $ (x_i, y_i) $
- 判断该数据点是否为当前模型的误分类点,即判断若$ y_i(eta sum n_iy_ix_i cdot x + b) <=0 $
则更新
为了减少计算量,我们可以预先计算式中的内积,得到Gram矩阵
$ G=[x_i, x_j]_{N imes N} (
3. **原始形式和对偶形式的选择**
相见知乎[如何理解感知机学习算法的对偶形式?](https://www.zhihu.com/question/26526858)
在向量维数(特征数)过高时,计算内积非常耗时,应选择对偶形式算法加速
在向量个数(样本数)过多时,每次计算累计和(对偶形式中的)omega$)就没有必要,应选择原始算法
四、代码实现
因为感知机对数据要求很严格,为了实现这个模型,我用到了iris的数据集,用来给鸢尾花分类
又因为感知机只能做二分类,所以还是要把原数据的两个类别合并
为了学习numpy,还是用了python实现
import numpy as np
from matplotlib import pyplot as plt
class Perceptron:
# use the primitive algorithm
arguments={
"item_class":{
"Iris-setosa": -1,
"Iris-versicolor": 1,
"Iris-virginica": 1,
},
"epoch": 800,
"colors": ['blue', 'red'],
"draw_start_x": 4,
"draw_end_x": 7.5,
"epsilon": 0.0,
"learning_rate": 0.25,
}
def __init__(self, vec_dim, learning_rate=None, epsilon=None):
# self.data=np.empty(dim)
# self.counter=np.zeros(dim)
self.data=None
self.vec_dim=vec_dim
self.lr=learning_rate
if epsilon:
self.epsilon=epsilon
else:
self.epsilon=self.arguments["epsilon"]
if learning_rate:
self.lr=learning_rate
else:
self.lr=self.arguments["learning_rate"]
self.weight=np.zeros((self.vec_dim-1, 1))
self.bias=0
def read_data(self, filepath):
raw_data=[]
with open(filepath, "r") as file:
for line in file.readlines():
if line=='
':
break
item=line.replace('
', '').split(',')
itemc=self.arguments["item_class"][item[-1]]
vec=[float(x) for x in item[0:2]]+[itemc]
raw_data.append(vec)
self.data=np.array(raw_data).T
def process(self):
# it is dual form
vec=self.data[:, 0:2]
self.gram=np.dot(vec, vec.T)
def train(self):
self.bias=0
self.weight=np.zeros((self.vec_dim-1, 1))
# self.counter=np.zeros(dim)
for epoch in range(1, self.arguments["epoch"]+1):
error_counter=0
for idx in range(self.data.shape[1]):
vec=self.data[:, idx]
x, y=vec[0:-1, np.newaxis], vec[-1]
if y*(np.dot(self.weight.T, x)+self.bias)<=self.epsilon:
self.weight+=self.lr*y*x
self.bias+=self.lr*y
error_counter+=1
print("epoch #%03d: error:%03d total:%03d"%(
epoch, error_counter, self.data.shape[1]))
print("weight:", self.weight.ravel())
print("bias:", self.bias, "
")
if error_counter==0:
print("train done!")
break
def show(self):
for idx in range(self.data.shape[1]):
color=self.arguments["colors"][0]
if self.data[2, idx]<0:
color=self.arguments["colors"][1]
plt.scatter(self.data[0, idx], self.data[1, idx], color=color)
y=[-(self.weight[0, 0]*self.arguments["draw_start_x"] + self.bias)/self.weight[1, 0],
-(self.weight[0, 0]*self.arguments["draw_end_x"] + self.bias)/self.weight[1, 0]]
plt.plot([self.arguments["draw_start_x"], self.arguments["draw_end_x"]], y)
plt.show()
更新了代码实现部分