• HDU3072


    题意:

      给出n个点(0 - n-1),m条边,code从0开始需要传播到1 - (n-1)的每个点,强连通分量之间的传播是没有花费的,求最小花费。

    思路:

      缩点,遍历边集,维护两端不属于一个连通分量的边的权和。

      1 #include <bits/stdc++.h>
      2 
      3 const int MAXN = 50000+10;
      4 const int MAXM = 100000+10;
      5 const int INF = 0x3f3f3f3f;
      6  
      7 struct Edge
      8 {
      9     int v, cost, next;
     10     Edge() {}
     11     Edge(int _v, int _cost, int _next):v(_v), cost(_cost), next(_next){}
     12 } edge[MAXM];
     13 int tot;
     14 
     15 int g[MAXN], dfn[MAXN], low[MAXN], T,ind,id[MAXN],dist[MAXN];
     16 
     17 bool vis[MAXN];
     18 std::stack<int> sta;
     19 
     20 void add_edge(int u, int v, int cost)
     21 {
     22     edge[tot] = Edge(v,cost,g[u]);
     23     g[u] = tot++;
     24 }
     25 
     26 void tarjan(int u)
     27 {
     28     sta.push(u);
     29     vis[u] = true;
     30     dfn[u] = low[u] = T++;
     31     for(int i = g[u]; i != -1; i = edge[i].next) {
     32         int v = edge[i].v;
     33         if(!dfn[v]) {
     34             tarjan(v);
     35             low[u] = std::min(low[u], low[v]);
     36         }
     37         else if(vis[v] && low[u] > dfn[v]) 
     38             low[u] = dfn[v];
     39     }
     40     if(low[u] == dfn[u]) {
     41         ind++;
     42         int v;
     43         do {
     44             v=sta.top();
     45             sta.pop();
     46             id[v] = ind;
     47             vis[v] = false;
     48         }while(v != u);
     49     }
     50 }
     51  
     52 void init()
     53 {
     54     memset(g, -1, sizeof g);
     55     memset(vis, 0, sizeof vis);
     56     memset(dfn,0, sizeof dfn);
     57     memset(low,0,sizeof low);
     58     T = ind = tot = 0;
     59     while(sta.empty() == false) 
     60         sta.pop();
     61 }
     62 
     63 int main()
     64 {
     65     int n, m;
     66     while(~scanf("%d%d", &n, &m) ){
     67         init();
     68         for(int i = 0, a, b, c; i<m; i++) {
     69             scanf("%d%d%d", &a, &b, &c);
     70             add_edge(a,b,c);
     71         }
     72 
     73         // get all strongly connected component
     74         // and color them
     75         for(int i = 0; i < n; ++ i){
     76             if(dfn[i] == false){
     77                 tarjan(i);
     78             }
     79         }
     80         // dist[i] is the minimum distance between i and any other point
     81         for(int i = 0; i < ind; i++) {
     82             dist[i] = INF;
     83         }
     84         for(int i = 0; i < n; i++) {
     85             int u = id[i];
     86             for(int e = g[i]; e != -1; e = edge[e].next) {
     87                 int v = id[edge[e].v];
     88                 if(u != v) {
     89                     dist[v] = std::min(dist[v], edge[e].cost);
     90                 }
     91             }
     92         }
     93 
     94         int res = 0;
     95         for(int i = 0; i < ind; ++ i) {
     96             if(i == id[0] || dist[i] == INF)
     97                 continue;
     98             res += dist[i];
     99         }
    100         printf("%d
    ", res);
    101     }
    102     return 0;
    103 }
  • 相关阅读:
    Struts1防止重复提交
    Jquery真的不难
    原生Ajax 和Jq Ajax
    JAVA调用Oracle存储过程
    Oracle存储过程包含三部分:过程声明,执行过程部分,存储过程异常。
    回到基础:封装集合
    如何摆脱工具类
    泛型的古怪与优雅
    Spring MVC + Hibernate + Maven: Crud操作示例
    JDBC性能小贴
  • 原文地址:https://www.cnblogs.com/takeoffyoung/p/4607163.html
Copyright © 2020-2023  润新知