• 生成对抗网络GAN介绍


    GAN原理

    生成对抗网络GAN由生成器和判别器两部分组成:

    • 判别器是常规的神经网络分类器,一半时间判别器接收来自训练数据中的真实图像,另一半时间收到来自生成器中的虚假图像。训练判别器使得对于真实图像,它输出的概率值接近1,而对于虚假图像则接近0
    • 生成器与判别器正好相反,通过训练,它输出判别器赋值概率接近1的图像。生成器需要产生更加真实的输出,从而欺骗判别器
    • 在GAN中要同时使用两个优化器,分别用来最小化判别器和生成器的损失

    Batch Normalization

    Batch Normalization是DCGAN(Deep Covolutional GAN)中常用的技术,它可以使网络训练得更快,允许更大的学习率,使更多的激活函数变得有效,并且使得参数更易初始化,BN一般用于激活函数使用之前。以图片数据为例,这里简单介绍一下BN的计算过程(参照Tensorflow和Keras中的API)。记训练数据$X$的维数为($N_{batch}$, $N_{height}$, $N_{width}$, $N_{channel}$),批次均值和批次方差分别为$$mu_{c}=frac{1}{N_bN_hN_w} sum_{i=1}^{N_b} sum_{j=1}^{N_h}sum_{k=1}^{N_w}X_{ijkc} ext{ }, ext{ }sigma_{c}^{2}=frac{1}{N_bN_hN_w} sum_{i=1}^{N_b} sum_{j=1}^{N_h}sum_{k=1}^{N_w}left(X_{ijkc}-mu_{c} ight)^{2} ext{ }, ext{其中}c=1,2,cdots,N_c$$则BN的输出为$$Y_{ijkc}=gamma hat{X}_{ijkc}+eta, ext{ where }hat{X}_{ijkc}=frac{X_{ijkc}-mu_{c}}{sqrt{sigma_{c}^{2}+epsilon}}$$其中$epsilon$是一个很小的正值(例如0.001),$gamma$和$eta$均为可训练参数。最后用$mu_{c}$和$sigma_{c}^{2}$更新总体的均值和方差,总体均值和方差在检验网络和进行预测时使用:$$hat{mu}_c= au hat{mu}_{c}+(1- au) mu_{c} ext{ }, ext{ }hat{sigma}_{c}^{2}= auhat{sigma}_{c}^{2}+(1- au) sigma_{c}^{2} ext{ }, ext{其中}c=1,2,cdots,N_c$$其中$hat{mu}_c$和$hat{sigma}_{c}^{2}$的初始值为0和1,$ au$可取为0.99

    DCGAN应用示例

    使用的数据集为the Street View House Numbers(SVHN) dataset,目标是由虚假图像(随机噪音)生成数字图像,具体代码如下所示:

    • 数据处理
      import pickle as pkl
      import matplotlib.pyplot as plt
      import numpy as np
      from scipy.io import loadmat
      import tensorflow as tf
      ### 读取数据
      data_dir = 'data/'
      trainset = loadmat(data_dir + 'svhntrain_32x32.mat')
      testset = loadmat(data_dir + 'svhntest_32x32.mat')
      #the same scale as tanh activation function
      def scale(x, feature_range=(-1, 1)):
          # scale to (0, 1)
          x = ((x - x.min())/(255 - x.min()))    
          # scale to feature_range
          min, max = feature_range
          x = x * (max - min) + min
          return x
      ### 数据准备
      class Dataset:
          def __init__(self, train, test, val_frac=0.5, shuffle=False, scale_func=None):
              split_idx = int(len(test['y'])*(1 - val_frac))
              self.test_x, self.valid_x = test['X'][:,:,:,:split_idx], test['X'][:,:,:,split_idx:]
              self.test_y, self.valid_y = test['y'][:split_idx], test['y'][split_idx:]
              self.train_x, self.train_y = train['X'], train['y']
              ###(32,32,3,:) to (:,32,32,3)    
              self.train_x = np.rollaxis(self.train_x, 3)
              self.valid_x = np.rollaxis(self.valid_x, 3)
              self.test_x = np.rollaxis(self.test_x, 3)        
              if scale_func is None:
                  self.scaler = scale
              else:
                  self.scaler = scale_func
              self.shuffle = shuffle        
          def batches(self, batch_size):
              if self.shuffle:
                  idx = np.arange(len(self.train_x))
                  np.random.shuffle(idx)
                  self.train_x = self.train_x[idx]
                  self.train_y = self.train_y[idx]        
              n_batches = len(self.train_y)//batch_size
              for ii in range(0, len(self.train_y), batch_size):
                  x = self.train_x[ii:ii+batch_size]
                  y = self.train_y[ii:ii+batch_size]            
                  yield self.scaler(x), y
      ### 创建数据集
      dataset = Dataset(trainset, testset)
      View Code
    • 搭建网络
      • 模型输入
        def model_inputs(real_dim, z_dim):
            inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='input_real')
            inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')    
            return inputs_real, inputs_z
        View Code
      • 搭建生成器Generator
        ### Generator
        def generator(z, output_dim, reuse=False, alpha=0.2, training=True):
            with tf.variable_scope('generator', reuse=reuse):
                x1 = tf.layers.dense(z, 4*4*512) #First fully connected layer  
                x1 = tf.reshape(x1, (-1, 4, 4, 512)) #Reshape it to start the convolutional stack
                x1 = tf.layers.batch_normalization(x1, training=training)
                x1 = tf.maximum(alpha * x1, x1) #leaky relu, 4x4x512 now
                # transpose convolution > batch norm > leaky ReLU     
                x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same') #with zero padding
                x2 = tf.layers.batch_normalization(x2, training=training)
                x2 = tf.maximum(alpha * x2, x2) #8x8x256 now
                # transpose convolution > batch norm > leaky ReLU
                x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same')
                x3 = tf.layers.batch_normalization(x3, training=training)
                x3 = tf.maximum(alpha * x3, x3) #16x16x128 now    
                # output layer
                logits = tf.layers.conv2d_transpose(x3, output_dim, 5, strides=2, padding='same') #32x32x3 now          
                out = tf.tanh(logits)        
                return out
        View Code
      • 搭建判别器Discriminator
        ### Discriminator
        def discriminator(x, reuse=False, training=True, alpha=0.2):
            with tf.variable_scope('discriminator', reuse=reuse):  
                x1 = tf.layers.conv2d(x, 64, 5, strides=2, padding='same') #Input layer is 32x32x3
                relu1 = tf.maximum(alpha * x1, x1) #16x16x64
                # convolution > batch norm > leaky ReLU
                x2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same')
                bn2 = tf.layers.batch_normalization(x2, training=training)
                relu2 = tf.maximum(alpha * bn2, bn2) #8x8x128
                # convolution > batch norm > leaky ReLU
                x3 = tf.layers.conv2d(relu2, 256, 5, strides=2, padding='same')
                bn3 = tf.layers.batch_normalization(x3, training=training)
                relu3 = tf.maximum(alpha * bn3, bn3) #4x4x256
                # Flatten it
                flat = tf.reshape(relu3, (-1, 4*4*256))
                logits = tf.layers.dense(flat, 1)
                out = tf.sigmoid(logits)      
                return out, logits
        View Code
      • 搭建GAN并计算损失函数
        ### Create GAN and Compute Model Loss
        ### input_real: Images from the real dataset
        ### input_z: Z input(noise)
        ### output_dim: The number of channels in the output image
        def model_loss(input_real, input_z, output_dim, training=True, alpha=0.2, smooth=0.1):
            g_model = generator(input_z, output_dim, alpha=alpha, training=training)
            d_model_real, d_logits_real = discriminator(input_real, training=training, alpha=alpha)
            # reuse=True: reuse the variables instead of creating new ones if we build the graph again
            d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, training=training, alpha=alpha)
            # real and fake loss
            d_loss_real = tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)*(1-smooth)) #label smoothing
            d_loss_real = tf.reduce_mean(d_loss_real)
            d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake))
            d_loss_fake = tf.reduce_mean(d_loss_fake)
            ### discriminator and generator loss
            d_loss = d_loss_real + d_loss_fake
            g_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake))
            g_loss = tf.reduce_mean(g_loss)
            return d_loss, g_loss, g_model
        View Code
      • 优化器
        ### Optimizer
        ### beta1: The exponential decay rate for the 1st moment in the optimizer
        def model_opt(d_loss, g_loss, learning_rate, beta1):
            # Get weights and bias to update
            t_vars = tf.trainable_variables()
            d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
            g_vars = [var for var in t_vars if var.name.startswith('generator')]
            # Optimize
            with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): #update population mean and variance
                d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
                g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
            return d_train_opt, g_train_opt
        View Code
      • 封装GAN
        ### Final GAN
        class GAN:
            def __init__(self, real_size, z_size, learning_rate, alpha=0.2, smooth=0.1, beta1=0.5):
                tf.reset_default_graph()      
                self.input_real, self.input_z = model_inputs(real_size, z_size)
                self.training = tf.placeholder_with_default(True, (), "train_status")        
                self.d_loss, self.g_loss, self.samples = model_loss(self.input_real, self.input_z, real_size[2], 
                                                                    training=self.training, alpha=alpha, smooth=smooth)      
                self.d_opt, self.g_opt = model_opt(self.d_loss, self.g_loss, learning_rate, beta1)
        View Code
    • 训练网络
      def train(net, dataset, epochs, batch_size, print_every=10, show_every=100):
          saver = tf.train.Saver()
          sample_z = np.random.uniform(-1, 1, size=(72, z_size)) #samples for generator to generate(for plotting)
          samples, losses = [], []
          steps = 0
          with tf.Session() as sess:
              sess.run(tf.global_variables_initializer())
              for e in range(epochs):
                  for x, y in dataset.batches(batch_size):
                      steps += 1
                      ### sample random noise for Generator
                      batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))
                      ### run optimizers
                      _, _ = sess.run([net.d_opt, net.g_opt], feed_dict={net.input_real:x, net.input_z:batch_z})
                      ### get the losses and print them out
                      if steps % print_every == 0:  
                          train_loss_d = net.d_loss.eval({net.input_z: batch_z, net.input_real: x})
                          train_loss_g = net.g_loss.eval({net.input_z: batch_z})
                          print("Epoch {}/{}...".format(e+1, epochs), 
                                "Discriminator Loss: {:.4f}...".format(train_loss_d), 
                                "Generator Loss: {:.4f}".format(train_loss_g))                     
                          losses.append((train_loss_d, train_loss_g)) #save losses to view after training
                      ### save generated samples
                      if steps % show_every == 0:
                          # training=False: the batch normalization layers will use the population statistics rather than the batch statistics
                          gen_samples = sess.run(net.samples, feed_dict={net.input_z: sample_z, net.training: False})
                          samples.append(gen_samples)                       
              saver.save(sess, './checkpoints/generator.ckpt')
          with open('samples.pkl', 'wb') as f:
              pkl.dump(samples, f)
          return losses, samples
      
      ### Hyperparameters
      real_size = (32,32,3)
      z_size = 100
      learning_rate = 0.0002
      batch_size = 128
      epochs = 25
      alpha = 0.2
      smooth = 0.1
      beta1 = 0.5
      
      ### Create and Train the network
      net = GAN(real_size, z_size, learning_rate, alpha=alpha, smooth=smooth, beta1=beta1)
      losses, samples = train(net, dataset, epochs, batch_size)
      View Code
    • 最终结果可视化
      ### Visualize
      def view_samples(sample, nrows, ncols, figsize=(5,5)): #the number of the sample=nrows*ncols
          fig, axes = plt.subplots(figsize=figsize, nrows=nrows, ncols=ncols, sharey=True, sharex=True)
          for ax, img in zip(axes.flatten(), sample):
              ax.axis('off')
              img = ((img - img.min())*255 / (img.max() - img.min())).astype(np.uint8)
              ax.set_adjustable('box-forced')
              im = ax.imshow(img, aspect='equal')   
          plt.subplots_adjust(wspace=0, hspace=0)
          return fig, axes
      view_samples(samples[-1], 6, 12, figsize=(10,5))
      View Code

    最终生成的图像如下图所示

    GAN应用于半监督学习

    使用的数据集同上,为了建立一个半监督学习的情景,这里仅使用前1000个训练数据的标签,并且将GAN的判别器由二分类变为多分类,针对此数据,共分为11类(10个真实数字和虚假图像)。代码的整体结构和上一部分相同,这里仅注释有改动的部分,针对该网络更为细节的改进参考文章Improved Techniques for Training GANs以及对应的github仓库

    • 数据处理
      import pickle as pkl
      import matplotlib.pyplot as plt
      import numpy as np
      from scipy.io import loadmat
      import tensorflow as tf
      data_dir = 'data/'
      trainset = loadmat(data_dir + 'svhntrain_32x32.mat')
      testset = loadmat(data_dir + 'svhntest_32x32.mat')
      def scale(x, feature_range=(-1, 1)):
          x = ((x - x.min())/(255 - x.min()))    
          min, max = feature_range
          x = x * (max - min) + min
          return x
      class Dataset:
          def __init__(self, train, test, val_frac=0.5, shuffle=True, scale_func=None):
              split_idx = int(len(test['y'])*(1 - val_frac))
              self.test_x, self.valid_x = test['X'][:,:,:,:split_idx], test['X'][:,:,:,split_idx:]
              self.test_y, self.valid_y = test['y'][:split_idx], test['y'][split_idx:]
              self.train_x, self.train_y = train['X'], train['y']
              ###################
              # For the purpose of semi-supervised learn, pretend that there are only 1000 labels
              # Use this mask to say which labels will allow to use
              self.label_mask = np.zeros_like(self.train_y)
              self.label_mask[0:1000] = 1
              ###################
              self.train_x = np.rollaxis(self.train_x, 3)
              self.valid_x = np.rollaxis(self.valid_x, 3)
              self.test_x = np.rollaxis(self.test_x, 3)
              if scale_func is None:
                  self.scaler = scale
              else:
                  self.scaler = scale_func
              self.train_x = self.scaler(self.train_x)
              self.valid_x = self.scaler(self.valid_x)
              self.test_x = self.scaler(self.test_x)
              self.shuffle = shuffle   
          def batches(self, batch_size, which_set="train"):
              ###################
              # Semi-supervised learn need both train data and validation(test) data   
              # Semi-supervised learn need both images and labels
              ###################
              x_name = which_set + "_x"
              y_name = which_set + "_y"
              num_examples = len(getattr(self, y_name))
              if self.shuffle:
                  idx = np.arange(num_examples)
                  np.random.shuffle(idx)
                  setattr(self, x_name, getattr(self, x_name)[idx])
                  setattr(self, y_name, getattr(self, y_name)[idx])
                  if which_set == "train":
                      self.label_mask = self.label_mask[idx]
              dataset_x = getattr(self, x_name)
              dataset_y = getattr(self, y_name)
              for ii in range(0, num_examples, batch_size):
                  x = dataset_x[ii:ii+batch_size]
                  y = dataset_y[ii:ii+batch_size]
                  if which_set == "train":
                      ###################
                      # When use the data for training, need to include the label mask
                      # Pretend don't have access to some of the labels                   
                      yield x, y, self.label_mask[ii:ii+batch_size]
                      ###################
                  else:
                      yield x, y
      dataset = Dataset(trainset, testset)
      View Code
    • 搭建网络
      • 模型输入
        def model_inputs(real_dim, z_dim):
            inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='input_real')
            inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
            ###################
            # Add placeholders for labels and label masks
            y = tf.placeholder(tf.int32, (None), name='y')
            label_mask = tf.placeholder(tf.int32, (None), name='label_mask')  
            ###################
            return inputs_real, inputs_z, y, label_mask
        View Code
      • 搭建生成器Generator
        ### Generator
        def generator(z, output_dim, reuse=False, alpha=0.2, training=True, size_mult=128):
            with tf.variable_scope('generator', reuse=reuse):
                x1 = tf.layers.dense(z, 4 * 4 * size_mult * 4)
                x1 = tf.reshape(x1, (-1, 4, 4, size_mult * 4))
                x1 = tf.layers.batch_normalization(x1, training=training)
                x1 = tf.maximum(alpha * x1, x1) #(:,4,4,4*size_mult)        
                x2 = tf.layers.conv2d_transpose(x1, size_mult * 2, 5, strides=2, padding='same')
                x2 = tf.layers.batch_normalization(x2, training=training)
                x2 = tf.maximum(alpha * x2, x2) #(:,8,8,2*size_mult)    
                x3 = tf.layers.conv2d_transpose(x2, size_mult, 5, strides=2, padding='same')
                x3 = tf.layers.batch_normalization(x3, training=training)
                x3 = tf.maximum(alpha * x3, x3) #(:,16,16,size_mult)     
                logits = tf.layers.conv2d_transpose(x3, output_dim, 5, strides=2, padding='same') #(:,32,32,3)      
                out = tf.tanh(logits)      
                return out
        View Code
      • 搭建判别器Discriminator
        ### Discriminator
        ###################
        ### Add dropout layer to reduce overfitting since only 1000 labelled samples exist
        ### 10 class classification(10 digits) and set [fake logit=0]
        ###################
        def discriminator(x, reuse=False, training=True, alpha=0.2, drop_rate=0., num_classes=10, size_mult=64):
            with tf.variable_scope('discriminator', reuse=reuse):
                # Add dropout layer
                x = tf.layers.dropout(x, rate=drop_rate/2.5) #Input layer (:,32,32,3)   
                ###################
                x1 = tf.layers.conv2d(x, size_mult, 3, strides=2, padding='same')
                relu1 = tf.maximum(alpha * x1, x1)
                # Add dropout layer
                relu1 = tf.layers.dropout(relu1, rate=drop_rate) #(:,16,16,size_mult)
                ###################
                x2 = tf.layers.conv2d(relu1, size_mult, 3, strides=2, padding='same')
                bn2 = tf.layers.batch_normalization(x2, training=training)
                relu2 = tf.maximum(alpha * x2, x2) #(:,8,8,size_mult)
                ###################
                x3 = tf.layers.conv2d(relu2, size_mult, 3, strides=2, padding='same')
                bn3 = tf.layers.batch_normalization(x3, training=training)
                relu3 = tf.maximum(alpha * bn3, bn3)
                # Add dropout layer
                relu3 = tf.layers.dropout(relu3, rate=drop_rate) #(:,4,4,size_mult)
                ###################
                x4 = tf.layers.conv2d(relu3, 2 * size_mult, 3, strides=1, padding='same')
                bn4 = tf.layers.batch_normalization(x4, training=training)
                relu4 = tf.maximum(alpha * bn4, bn4) #(:,4,4,2*size_mult)
                ###################
                x5 = tf.layers.conv2d(relu4, 2 * size_mult, 3, strides=1, padding='same')
                bn5 = tf.layers.batch_normalization(x5, training=training)
                relu5 = tf.maximum(alpha * bn5, bn5) #(:,4,4,2*size_mult)
                ###################
                x6 = tf.layers.conv2d(relu5, 2 * size_mult, 3, strides=1, padding='valid')
                # This layer is used for the feature matching loss, don't use batch normalization on this layer
                # See the function model_loss for the feature matching loss
                relu6 = tf.maximum(alpha * x6, x6) #(:,2,2,2*size_mult)
                ###################
                # Flatten by global average pooling
                features = tf.reduce_mean(relu6, (1, 2)) #(:,2*size_mult)
                # Multi-classification
                class_logits = tf.layers.dense(features, num_classes) #(:,10) 
                out = tf.nn.softmax(class_logits)
                ###################
                # Split real and fake logits for classifying real and fake
                real_class_logits = class_logits
                fake_class_logits = 0.
                # Set gan_logits such that P(input is real | input) = sigmoid(gan_logits)
                # For Numerical stability, use this trick: log sum_i exp a_i = m + log sum_i exp(a_i - m), m = max_i a_i
                mx = tf.reduce_max(real_class_logits, 1, keepdims=True) #(:,1)
                stable_real_class_logits = real_class_logits - mx #minus the largest real logit for each sample, (:,10)
                gan_logits = tf.log(tf.reduce_sum(tf.exp(stable_real_class_logits), 1)) + tf.squeeze(mx) - fake_class_logits #(number of samples,)
                ###################
                return out, class_logits, gan_logits, features
        View Code
      • 搭建GAN并计算损失函数
        ### Create GAN and Compute Model Loss
        def model_loss(input_real, input_z, output_dim, y, num_classes, label_mask, g_size_mult, d_size_mult, 
                    training=True, alpha=0.2, drop_rate=0.):
            g_model = generator(input_z, output_dim, alpha=alpha, size_mult=g_size_mult, training=training)
            d_on_real = discriminator(input_real, alpha=alpha, drop_rate=drop_rate, size_mult=d_size_mult, training=training)
            d_on_fake = discriminator(g_model, reuse=True, alpha=alpha, drop_rate=drop_rate, size_mult=d_size_mult, training=training)
            out_real, class_logits_real, gan_logits_real, features_real = d_on_real    
            out_fake, class_logits_fake, gan_logits_fake, features_fake = d_on_fake
            ###################
            # Compute the loss for the discriminator
            #   1. The loss for the GAN problem, minimize the cross-entropy for the binary
            #      real-vs-fake classification problem
            #   2. The loss for the SVHN digit classification problem, where minimize the  
            #      cross-entropy(use the labels) for the multi-class softmax
            d_loss_real = tf.nn.sigmoid_cross_entropy_with_logits(logits=gan_logits_real, labels=tf.ones_like(gan_logits_real)*0.9) # label smoothing
            d_loss_real = tf.reduce_mean(d_loss_real)
            d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits(logits=gan_logits_fake, labels=tf.zeros_like(gan_logits_fake))
            d_loss_fake = tf.reduce_mean(d_loss_fake)
            y = tf.squeeze(y) #labels
            class_cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=class_logits_real, 
                                                                             labels=tf.one_hot(y, class_logits_real.get_shape()[1], dtype=tf.float32))
            # Use label_mask to ignore the examples pretending unlabeled for the semi-supervised problem                                                                            
            class_cross_entropy = tf.squeeze(class_cross_entropy)
            label_mask = tf.squeeze(tf.to_float(label_mask))
            d_loss_class = tf.reduce_sum(label_mask * class_cross_entropy) / tf.maximum(1., tf.reduce_sum(label_mask))
            d_loss = d_loss_class + d_loss_real + d_loss_fake
            ###################
            # Compute the loss for the generator
            # Set the loss to the "feature matching" loss invented by Tim Salimans at OpenAI
            # This loss is the mean absolute difference between the real features and the fake features
            # This loss works better for semi-supervised learnings than the traditional generator loss
            real_moments = tf.reduce_mean(features_real, axis=0)
            fake_moments = tf.reduce_mean(features_fake, axis=0)
            g_loss = tf.reduce_mean(tf.abs(real_moments - fake_moments))
            ###################
            pred_class = tf.cast(tf.argmax(class_logits_real, 1), tf.int32)
            eq = tf.equal(y, pred_class)
            correct = tf.reduce_sum(tf.to_float(eq))
            masked_correct = tf.reduce_sum(label_mask * tf.to_float(eq))
            return d_loss, g_loss, correct, masked_correct, g_model
        View Code
      • 优化器
        ### Optimizer
        def model_opt(d_loss, g_loss, learning_rate, beta1):
            t_vars = tf.trainable_variables()
            d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
            g_vars = [var for var in t_vars if var.name.startswith('generator')]
            with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
                g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
            return d_train_opt, g_train_opt
        View Code
      • 封装GAN
        ### Final GAN
        class GAN:
            def __init__(self, real_size, z_size, g_size_mult=32, d_size_mult=64, num_classes=10, alpha=0.2, beta1=0.5):
                tf.reset_default_graph()
                ###################
                # The dropout rate and learning rate
                self.drop_rate = tf.placeholder_with_default(.6, (), "drop_rate")
                self.learning_rate = tf.placeholder(tf.float32, None, "learning_rate")
                ###################
                self.input_real, self.input_z, self.y, self.label_mask = model_inputs(real_size, z_size)
                self.training = tf.placeholder_with_default(True, (), "train_status")   
                loss_results = model_loss(self.input_real, self.input_z, real_size[2], self.y, num_classes, self.label_mask, 
                                          g_size_mult, d_size_mult, self.training, alpha, self.drop_rate)
                self.d_loss, self.g_loss, self.correct, self.masked_correct, self.samples = loss_results
                self.d_opt, self.g_opt = model_opt(self.d_loss, self.g_loss, self.learning_rate, beta1)
        View Code
    • 训练网络
      def train(net, dataset, epochs, batch_size, learning_rate):    
          saver = tf.train.Saver()
          sample_z = np.random.normal(0, 1, size=(50, z_size))
          samples, train_accuracies, test_accuracies = [], [], []
          steps = 0
          with tf.Session() as sess:
              sess.run(tf.global_variables_initializer())
              for e in range(epochs):
                  print("Epoch",e)  
                  num_examples = 0
                  num_correct = 0
                  for x, y, label_mask in dataset.batches(batch_size):
                      steps += 1
                      num_examples += label_mask.sum()
                      batch_z = np.random.normal(0, 1, size=(batch_size, z_size))
                      _, _, correct = sess.run([net.d_opt, net.g_opt, net.masked_correct], 
                                                feed_dict={net.input_real: x, net.input_z: batch_z, net.y: y, 
                                                           net.label_mask: label_mask, net.learning_rate: learning_rate})
                      num_correct += correct
                  ###################
                  # At the end of the epoch:
                  #   compute train accuracy(only for labeled[masked] images) 
                  #   shrink learning rate
                  train_accuracy = num_correct / float(num_examples)        
                  print("		Classifier train accuracy: ", train_accuracy)
                  learning_rate *= 0.9
                  ###################
                  # At the end of the epoch: compute test accuracy       
                  num_examples = 0
                  num_correct = 0
                  for x, y in dataset.batches(batch_size, which_set="test"):
                      num_examples += x.shape[0]
                      correct = sess.run(net.correct, feed_dict={net.input_real: x, net.y: y, net.drop_rate: 0., net.training: False})
                      num_correct += correct        
                  test_accuracy = num_correct / float(num_examples)
                  print("		Classifier test accuracy", test_accuracy)  
                  ###################   
                  # Save history of accuracies to view after training
                  train_accuracies.append(train_accuracy)
                  test_accuracies.append(test_accuracy)
                  ###################
                  gen_samples = sess.run(net.samples, feed_dict={net.input_z: sample_z, net.training: False})
                  samples.append(gen_samples)                    
              saver.save(sess, './checkpoints/generator.ckpt')
          with open('samples.pkl', 'wb') as f:
              pkl.dump(samples, f)
          return train_accuracies, test_accuracies, samples
      
      real_size = (32,32,3)
      z_size = 100
      learning_rate = 0.0003
      batch_size = 128
      epochs = 20
      net = GAN(real_size, z_size)
      train_accuracies, test_accuracies, samples = train(net, dataset, epochs, batch_size, learning_rate)
      View Code
    • 最终结果
      # Plot accuracies
      fig, ax = plt.subplots(figsize=(10,5))
      plt.plot(train_accuracies, label='Train', alpha=0.5)
      plt.plot(test_accuracies, label='Test', alpha=0.5)
      ax.set_xticks(range(epochs))
      plt.title("Accuracy(Final Test: {0}%)".format(int(round(test_accuracies[-1]*100))))
      plt.legend()
      View Code

  • 相关阅读:
    Plug It In
    The King's Walk
    Water Testing 匹克定理
    基尔霍夫矩阵
    nginx 常用的命令
    Nginx window安装
    使用nrm管理 npm 镜像仓库
    window 安装node.js
    变量和数据类型
    同步,异步,阻塞,非阻塞
  • 原文地址:https://www.cnblogs.com/sunwq06/p/11189722.html
Copyright © 2020-2023  润新知