Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
题解:按照题目要求的时间复杂度,使用二分方法,设置私有两个变量begin和end,记录最终找到的range的范围,在递归二分的过程中,如果找到了目标,根据此时target在数组中的下表不断的缩小begin和扩大end,这样最终begin和end就是最大的range范围了。
主要步骤如下:
- 如果A[mid] == target,根据mid的值更新begin和end值。然后判断左边数组最右边的元素是否仍然和target相等,如果相等要继续二分搜索左边的数组;右边的数组也要做同样的处理;
- 如果A[mid] < target,递归搜索右边的数组;
- 如果A[mid] > target,递归搜索左边的数组;
数组[2,2,2,2]的搜索过程如下:
所以最终返回的range是[0,2]。
代码如下:
1 public class Solution { 2 private int begin; 3 private int end; 4 public void BinarySearch(int[] A,int target,int s,int e){ 5 if(s > e) 6 return; 7 int mid = s + (e - s)/2; 8 if(target == A[mid]){ 9 if(mid < begin) 10 begin = mid; 11 if(mid > end) 12 end = mid; 13 if(mid - 1>=0 && A[mid-1] == target) 14 BinarySearch(A, target, s, mid-1); 15 if(mid + 1 < A.length && A[mid+1] == target) 16 BinarySearch(A, target, mid+1, e); 17 } 18 else{ 19 if(A[mid] > target) 20 BinarySearch(A, target, s, mid-1); 21 else { 22 BinarySearch(A, target, mid+1, e); 23 } 24 } 25 } 26 public int[] searchRange(int[] A, int target) { 27 begin = A.length; 28 end = -1; 29 BinarySearch(A, target, 0, A.length-1); 30 31 int[] answer = new int[2]; 32 if(begin == A.length && end == -1){ 33 answer[0] = answer[1] = -1; 34 } 35 else{ 36 answer[0] = begin; 37 answer[1] = end; 38 } 39 return answer; 40 } 41 }