前面经过channel初始化、注册,所需要的数据结构(epoll_event)基本上准备好了,serverSocket也处于监听状态,可以接收来自客户端的请求了。NioServerSocketChannel注册在了NioEventLoop#selector,在注册过程中启动了NioEventLoop,run方法会循环执行,每次循环都会执行select和执行所有的task。如果select有事件,则会处理收到的事件。
private void processSelectedKeys() {
if (selectedKeys != null) {
// 是否使用优化过的selectionKey
processSelectedKeysOptimized();
} else {
processSelectedKeysPlain(selector.selectedKeys());
}
}
前面在NioEventLoop初始化的时候说过关于selectionKey优化的问题,这里不再赘述。两种方式主要是遍历selectionKey的方式不同,具体处理事件的调用是一样的。这里以processSelectedKeysOptimized为例。
accept
private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
// channel是NioServerSocketChannel
// unsafe是NioMessageUnsafe
final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
// 省略中间代码...
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
// 调用NioMessageUnsafe.read
unsafe.read();
}
} catch (CancelledKeyException ignored) {
unsafe.close(unsafe.voidPromise());
}
public void read() {
// 省略中间代码...
// 由于是ServerSocket,只负责accept,如果有IO事件说明就是有新的客户端连接,所以这里就是创建NioSocketChannel
int localRead = doReadMessages(readBuf);
if (localRead == 0) {
break;
}
if (localRead < 0) {
closed = true;
break;
}
allocHandle.incMessagesRead(localRead);
} while (allocHandle.continueReading());
} catch (Throwable t) {
exception = t;
}
int size = readBuf.size();
for (int i = 0; i < size; i ++) {
readPending = false;
// 注册刚刚创建的NioSocketChannel
pipeline.fireChannelRead(readBuf.get(i));
}
readBuf.clear();
allocHandle.readComplete();
pipeline.fireChannelReadComplete();
// 省略中间代码...
}
}
protected int doReadMessages(List<Object> buf) throws Exception {
// 调用java.nio.channels.ServerSocketChannel#accept来创建SocketChannel
SocketChannel ch = SocketUtils.accept(javaChannel());
try {
if (ch != null) {
// 创建NioSocketChannel
buf.add(new NioSocketChannel(this, ch));
return 1;
}
} catch (Throwable t) {
// 省略中间代码...
}
return 0;
}
上面创建了NioSocketChannel之后,接下来注册所有客户端连接的NioSocketChannel,调用的是DefaultChannelPipeline#fireChannelRead方法,接下来是执行pipeline中的handler,在初始化的时候添加了LoggingHandler (如果启动的时候配置了的话),那么目前pipeline中的handler有
- io.netty.channel.DefaultChannelPipeline$HeadContext:pipeline创建的时候默认的第一个handler
- io.netty.handler.logging.LoggingHandler:启动的时候用户配置的handler
- io.netty.bootstrap.ServerBootstrap$ServerBootstrapAcceptor
- io.netty.channel.DefaultChannelPipeline$TailContext:pipeline创建的时候默认的最后一个handler
下面看下ServerBootstrap$ServerBootstrapAcceptor是什么时候添加到handler的
// io.netty.bootstrap.ServerBootstrap#init
// 这个方法是NioServerSocketChannel初始化的时候调用的
void init(Channel channel) throws Exception {
// 省略中间代码...
p.addLast(new ChannelInitializer<Channel>() {
@Override
public void initChannel(final Channel ch) throws Exception {
final ChannelPipeline pipeline = ch.pipeline();
ChannelHandler handler = config.handler();
if (handler != null) {
pipeline.addLast(handler);
}
ch.eventLoop().execute(new Runnable() {
@Override
public void run() {
// 在pipeline中添加ServerBootstrapAcceptor
pipeline.addLast(new ServerBootstrapAcceptor(
ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
}
});
}
});
}
之所以说ServerBootstrapAcceptor,是因为NioSocketChannel的register过程是这个handler的channelRead方法开始的
public void channelRead(ChannelHandlerContext ctx, Object msg) {
final Channel child = (Channel) msg;
child.pipeline().addLast(childHandler);
setChannelOptions(child, childOptions, logger);
// 配置NioSocketChannel
for (Entry<AttributeKey<?>, Object> e: childAttrs) {
child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
}
try {
// 这里childGroup就是一开始我们配置的workerGroup
// 所以调用的是io.netty.channel.MultithreadEventLoopGroup#register(io.netty.channel.Channel)
childGroup.register(child).addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (!future.isSuccess()) {
forceClose(child, future.cause());
}
}
});
} catch (Throwable t) {
forceClose(child, t);
}
}
接下来的注册过程和NioServerSocketChannel的注册过程是类似的,创建socket,创建SelectionKeyImpl等。只不过NioSocketChannel不监听accept事件。
read
上面在接收到来自客户端的连接请求后,将NioSocketChannel注册到selector上,这个selector也是在NioEventLoop里面的,后面和这个客户端的通信都会通过这个channel进行,如果客户端发送来数据,也是selector收到读事件通知,然后调用processSelectedKey来处理read事件。
private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
// channel是NioSocketChannel
// unsafe是NioSocketChannelUnsafe
final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
// 省略中间代码...
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
// 调用NioByteUnsafe.read
unsafe.read();
}
} catch (CancelledKeyException ignored) {
unsafe.close(unsafe.voidPromise());
}
public final void read() {
final ChannelConfig config = config();
if (shouldBreakReadReady(config)) {
clearReadPending();
return;
}
final ChannelPipeline pipeline = pipeline();
// PooledByteBufAllocator,默认的内存申请管理器
final ByteBufAllocator allocator = config.getAllocator();
// AdaptiveRecvByteBufAllocator$HandleImpl
final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle();
allocHandle.reset(config);
ByteBuf byteBuf = null;
boolean close = false;
try {
do {
// 申请内存
byteBuf = allocHandle.allocate(allocator);
// 读取数据
allocHandle.lastBytesRead(doReadBytes(byteBuf));
if (allocHandle.lastBytesRead() <= 0) {
// nothing was read. release the buffer.
byteBuf.release();
byteBuf = null;
close = allocHandle.lastBytesRead() < 0;
if (close) {
// There is nothing left to read as we received an EOF.
readPending = false;
}
break;
}
allocHandle.incMessagesRead(1);
readPending = false;
// 执行pipeline中的handler
pipeline.fireChannelRead(byteBuf);
byteBuf = null;
} while (allocHandle.continueReading());
// 省略中间代码
}
}
一般来说NioSocketChannel中的handler包括
- io.netty.channel.DefaultChannelPipeline$HeadContext
- org.lep.test.netty.protocol.custom.codec.NettyMessageDecoder:自定义的解码器
- org.lep.test.netty.protocol.custom.codec.NettyMessageEncoder:自定义的编码器
- org.lep.test.netty.protocol.custom.server.LoginAuthRespHandler:自定义的handler
- org.lep.test.netty.protocol.custom.server.HeartBeatRespHandler:自定义的handler
- io.netty.channel.DefaultChannelPipeline$TailContext
netty提供了一些基本的编解码功能,自己可以根据实际需要扩展使用,然后自定义自己的逻辑处理handler。
上面还涉及到内存的分配部分留在下一节介绍。
总结
read事件处理过程:
- 接收到read事件
- 分配内存,初始化buffer
- 调用channel.read将数据读取到buffer中
- 执行pipeline中的handler,包括了编解码的handler,自定义的handler来处理数据