手动博客搬家: 本文发表于20180716 10:53:12, 原地址https://blog.csdn.net/suncongbo/article/details/81061500
给定一个(n)个点(m)条边的有向图(不一定无环),每个点上有一个小写字母。要找一条路径,使得路径上出现次数最多的字母出现的次数最多。如果答案为无穷大输出-1.
题解:何时无穷大?有环的时候可以不停地走环,统计无限次答案,答案为无穷大。因此,对于-1的情况,只需要判一下环即可。
对于有限大的情况,令(dp[i][c])表示以第(i)个节点结束的路径中含有(c)这个字母次数的最大值。则有(dp[i][c]=max_{jin ind[i]}{dp[j][c]}+[a[i]==c]), (a[i])为第(i)个点的字母。
然后就可以得到答案了。时间复杂度(O(mS)), S为字符集大小26.
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 3e5;
const int S = 26;
struct Edge
{
int v,nxt; bool used;
} e[N+3];
int fe[N+2];
char s[N+2];
int a[N+2];
int dfn[N+2],low[N+2];
int sta[N+2];
bool ins[N+2],vis[N+2];
int dp[N+2][S+2];
int ind[N+2];
int que[N+2];
int n,m,tp,mx,head,tail,tot;
void addedge(int u,int v)
{
e[++m].v = v; e[m].nxt = fe[u]; fe[u] = m;
}
void Tarjan(int u)
{
dfn[u] = low[u] = ++tp; sta[tp] = u; ins[u] = true;
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(!dfn[v]) {Tarjan(v); low[u] = min(low[v],low[u]);}
else if(ins[v]) low[u] = min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
int tmp = 1;
while(sta[tp]!=u && tp>0)
{
int v = sta[tp];
ins[v] = false;
tp--; tmp++;
}
ins[u] = false; tp--;
if(tmp>mx) mx = tmp;
}
}
int main()
{
int m0; m = 0;
scanf("%d%d",&n,&m0);
scanf("%s",s+1); for(int i=1; i<=n; i++) a[i] = (int)s[i]-'a'+1;
for(int i=1; i<=m0; i++) {int x,y; scanf("%d%d",&x,&y); addedge(x,y); if(x==y) {printf("-1
"); return 0;}}
for(int i=1; i<=n; i++) {if(!dfn[i]) Tarjan(i);}
if(mx>1) {printf("-1
"); return 0;}
for(int i=1; i<=n; i++)
{
for(int j=fe[i]; j; j=e[j].nxt) ind[e[j].v]++;
}
tot = 0;
for(int i=1; i<=n; i++) dp[i][a[i]] = 1;
while(tot<n)
{
for(int j=1; j<=n; j++)
{
if(ind[j]==0 && vis[j]==false)
{
tail++;
que[head] = j; vis[j] = true; tot++;
while(head<=tail)
{
int c = que[head++];
for(int i=fe[c]; i; i=e[i].nxt)
{
if(e[i].used) continue;
e[i].used = true;
ind[e[i].v]--;
for(int k=1; k<=S; k++)
{
if(a[e[i].v]==k) dp[e[i].v][k] = max(dp[e[i].v][k],dp[c][k]+1);
else dp[e[i].v][k] = max(dp[e[i].v][k],dp[c][k]);
}
if(ind[e[i].v]==0 && vis[e[i].v]==false)
{
vis[e[i].v] = true; tot++;
que[++tail] = e[i].v;
}
}
}
}
}
}
int ans = 0;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=S; j++) ans = max(ans,dp[i][j]);
}
printf("%d
",ans);
return 0;
}