• 【BZOJ3456】—城市规划(生成函数+多项式求逆)


    传送门


    考虑fif_i表示ii个点连通图个数,gig_i表示ii个点的图的个数
    gi=2(i2)g_i=2^{ichoose 2}

    gng_n可以通过枚举1号点所在连通块大小表示

    gn=i=1nfigni(n1i1)g_n=sum_{i=1}^{n}f_i*g_{n-i}*{n-1choose i-1}
    gn(n1)!=i=1nfi1(i1)!gni1(ni)!frac{g_n}{(n-1)!}=sum_{i=1}^{n}f_i*frac{1}{(i-1)!}*g_{n-i}*frac{1}{(n-i)!}

    A(x)=i=1ngi(i1)!xiA(x)=sum_{i=1}^{n}frac{g_i}{(i-1)!}x^{i}

    B(x)=i=1nfi(i1)!xiB(x)=sum_{i=1}^{n}frac{f_i}{(i-1)!}x^i

    C(x)=i=0ngii!xiC(x)=sum_{i=0}^nfrac{g_i}{i!}x^i

    A(x)=B(x)C(x)A(x)=B(x)C(x)
    B(x)=A(x)C(x)B(x)=frac{A(x)}{C(x)}

    fn(n1)!=B(x)[xi]frac{f_n}{(n-1)!}=B(x)[x^i]

    多项式求逆就完了

    #include<bits/stdc++.h>
    using namespace std;
    const int RLEN=1<<20|1;
    inline char gc(){
    	static char ibuf[RLEN],*ib,*ob;
    	(ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    	return (ob==ib)?EOF:*ib++;
    }
    #define gc getchar
    inline int read(){
    	char ch=gc();
    	int res=0,f=1;
    	while(!isdigit(ch))f^=ch=='-',ch=gc();
    	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    	return f?res:-res;
    }
    #define ll long long
    #define re register
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define pb push_back
    const int mod=1004535809,g=3;
    inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
    inline void Add(int &a,int b){a=add(a,b);}
    inline int dec(int a,int b){return a>=b?a-b:a-b+mod;}
    inline void Dec(int &a,int b){a=dec(a,b);}
    inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
    inline void Mul(int &a,int b){a=mul(a,b);}
    inline int ksm(int a,int b,int res=1){for(;b;b>>=1,a=mul(a,a))(b&1)?(res=mul(res,a)):0;return res;}
    const int N=130005;
    int rev[N<<2];
    #define poly vector<int> 
    inline void ntt(poly &f,int lim,int kd){
    	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
    	for(int mid=1;mid<lim;mid<<=1){
    		int now=ksm(g,(mod-1)/(mid<<1));
    		for(int i=0;i<lim;i+=mid*2){
    			int w=1;
    			for(int j=0;j<mid;j++,Mul(w,now)){
    				int a0=f[i+j],a1=mul(f[i+j+mid],w);
    				f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
    			}
    		}
    	}
    	if(kd==-1&&(reverse(f.begin()+1,f.begin()+lim),1))
    		for(int i=0,inv=ksm(lim,mod-2);i<lim;i++)Mul(f[i],inv);
    }
    inline void init(int lim){
    	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
    }
    inline poly mul(poly a,poly b){
    	int deg=a.size()+b.size()-1,lim=1;
    	if(deg<=128){
    		poly c(deg,0);
    		for(int i=0;i<a.size();i++)
    		for(int j=0;j<b.size();j++)
    			Add(c[i+j],mul(a[i],b[j]));
    		return c;
    	}
    	while(lim<deg)lim<<=1;init(lim);
    	a.resize(lim),b.resize(lim);
    	ntt(a,lim,1),ntt(b,lim,1);
    	for(int i=0;i<lim;i++)Mul(a[i],b[i]);
    	ntt(a,lim,-1),a.resize(deg);
    	return a;
    }
    inline poly Inv(poly b,int deg){
    	poly a(1,ksm(b[0],mod-2)),c;
    	for(int lim=4;lim<(deg<<2);lim<<=1){
    		init(lim),c=b,a.resize(lim);
    		c.resize(lim>>1),c.resize(lim);
    		ntt(a,lim,1),ntt(c,lim,1);
    		for(int i=0;i<lim;i++)a[i]=mul(a[i],dec(2,mul(a[i],c[i])));
    		ntt(a,lim,-1),a.resize(lim>>1);
    	}a.resize(deg);return a;
    }
    poly f,G,p;
    int fac[N],ifac[N],n;
    inline int C(int x){
    	return (1ll*x*(x-1)/2)%(mod-1);
    }
    int main(){
    	n=read(),ifac[0]=fac[0]=1;
    	for(int i=1;i<=n;i++)fac[i]=mul(fac[i-1],i);
    	ifac[n]=ksm(fac[n],mod-2);
    	for(int i=n-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
    	G.resize(n+1),p.resize(n+1);
    	for(int i=0;i<=n;i++)G[i]=mul(ifac[i],ksm(2,C(i)));
    	for(int i=1;i<=n;i++)p[i]=mul(ifac[i-1],ksm(2,C(i)));
    	G=Inv(G,n+1);
    	f=mul(p,G);
    	cout<<mul(fac[n-1],f[n]);
    }
    
  • 相关阅读:
    Linux 目录结构
    date命令--修改linux系统时间
    uniq linux下去除重复行命令
    Linux查看程序端口占用情况
    openfire连接登陆优化方案
    hdu 4848 搜索+剪枝 2014西安邀请赛
    经常使用ARM汇编指令
    一维DFT
    C++ lambda 表达式传递的变量默认不可变
    wm命令用法及LCD显示图标大小不正常时解决的方法
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328818.html
Copyright © 2020-2023  润新知