• 【洛谷 P5273】【模板】多项式快速幂 (加强版)(多项式Ln+Exp)


    传送门


    考虑当a0≠1a_0= ot 1的时候是没法直接用LnLn

    一个显然的想法是找到第一个a0≠0a_0= ot 0的地方apa_p
    aa左移pp位后除以apa_p,这样就保证常数项为11

    最后只需要乘上apkxpka_p^kx^{pk}就可以了

    而且我们只需要把前npkn-pk次项拿来做快速幂就可以了

    #include<bits/stdc++.h>
    using namespace std;
    #define gc getchar
    inline int read(){
    	char ch=gc();
    	int res=0,f=1;
    	while(!isdigit(ch))f^=ch=='-',ch=gc();
    	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    	return f?res:-res;
    }
    #define re register
    #define pb push_back
    #define cs const
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define ll long long
    #define poly vector<int>
    #define bg begin
    cs int mod=998244353,G=3;
    inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
    inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
    inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
    inline void Mul(int &a,int b){a=mul(a,b);}
    inline int ksm(int a,int b,int res=1){
    	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
    }
    inline void chemx(int &a,int b){a<b?a=b:0;}
    inline void chemn(int &a,int b){a>b?a=b:0;}
    cs int N=(1<<21)|5,C=21;
    poly w[C+1];
    int rev[N],fac[N],ifac[N],inv[N];
    inline void init(cs int len=N-5){
    	fac[0]=ifac[0]=inv[0]=inv[1]=1;
    	for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
    	ifac[len]=ksm(fac[len],mod-2);
    	for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
    	for(int i=2;i<=len;i++)inv[i]=mul(mod-mod/i,inv[mod%i]);
    }
    inline void init_w(){
    	for(int i=1;i<=C;i++)w[i].resize(1<<(i-1));
    	int wn=ksm(G,(mod-1)/(1<<C));
    	w[C][0]=1;
    	for(int i=1;i<(1<<(C-1));i++)w[C][i]=mul(w[C][i-1],wn);
    	for(int i=C-1;i;i--)
    	for(int j=0;j<(1<<(i-1));j++)
    	w[i][j]=w[i+1][j<<1];
    }
    inline void init_rev(int lim){
    	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
    }
    inline void ntt(poly &f,int lim,int kd){
    	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
    	for(int a0,a1,l=1,mid=1;mid<lim;mid<<=1,l++)
    	for(int i=0;i<lim;i+=(mid<<1))
    	for(int j=0;j<mid;j++)
    	a0=f[i+j],a1=mul(w[l][j],f[i+j+mid]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
    	if(kd==-1){
    		reverse(f.bg()+1,f.bg()+lim);
    		for(int i=0;i<lim;i++)Mul(f[i],inv[lim]);
    	}
    }
    inline poly operator +(poly a,poly b){
    	if(a.size()<b.size())a.resize(b.size());
    	for(int i=0;i<b.size();i++)Add(a[i],b[i]);
    	return a;
    }
    inline poly operator -(poly a,poly b){
    	if(a.size()<b.size())a.resize(b.size());
    	for(int i=0;i<b.size();i++)Dec(a[i],b[i]);
    	return a;
    }
    inline poly operator *(poly a,int b){
    	for(int i=0;i<a.size();i++)Mul(a[i],b);
    	return a;
    }
    inline poly operator *(poly a,poly b){
    	int deg=a.size()+b.size()-1,lim=1;
    	if(deg<=64){
    		poly c(deg,0);
    		for(int i=0;i<a.size();i++)
    		for(int j=0;j<b.size();j++)
    		Add(c[i+j],mul(a[i],b[j]));
    		return c;
    	}
    	while(lim<deg)lim<<=1;
    	init_rev(lim);
    	a.resize(lim),ntt(a,lim,1);
    	b.resize(lim),ntt(b,lim,1);
    	for(int i=0;i<lim;i++)Mul(a[i],b[i]);
    	ntt(a,lim,-1),a.resize(deg);
    	return a;
    }
    inline poly Inv(poly a,int deg){
    	poly b(1,ksm(a[0],mod-2)),c;
    	for(int lim=4;lim<(deg<<2);lim<<=1){
    		c=a,c.resize(lim>>1);
    		init_rev(lim);
    		c.resize(lim),ntt(c,lim,1);
    		b.resize(lim),ntt(b,lim,1);
    		for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
    		ntt(b,lim,-1),b.resize(lim>>1);
    	}b.resize(deg);return b;
    }
    inline poly deriv(poly a){
    	for(int i=0;i<a.size()-1;i++)a[i]=mul(a[i+1],i+1);
    	a.pop_back();return a;
    }
    inline poly integ(poly a){
    	a.pb(0);
    	for(int i=a.size()-1;i;i--)a[i]=mul(a[i-1],inv[i]);
    	a[0]=0;return a;
    }
    inline poly Ln(poly a,int deg){
    	a=integ(Inv(a,deg)*deriv(a)),a.resize(deg);return a;
    }
    inline poly exp(poly a,int deg){
    	poly b(1,1),c;
    	for(int lim=2;lim<(deg<<1);lim<<=1){
    		c=Ln(b,lim),c=a-c;
    		c[0]++,b=b*c,b.resize(lim);
    	}b.resize(deg);return b;
    }
    inline poly ksm(poly a,int b,int deg){
    	int last=deg-1;
    	for(int i=0;i<a.size();i++)if(a[i]){last=i;break;}
    	if(1ll*last*b>deg)
    		return poly(deg,0);
    	int pos=deg-b*last,val=a[last],iv=ksm(val,mod-2);
    	for(int i=0;i<pos;i++)a[i]=mul(a[i+last],iv);
    	a.resize(pos),a=exp(Ln(a,pos)*b,pos);
    	val=ksm(val,b);a.resize(deg);//先resize
    	for(int i=pos-1;~i;i--)a[i+last*b]=mul(a[i],val);//逆序做 
    	for(int i=0;i<last*b;i++)a[i]=0;
    	return a;
    }
    int n,m;
    poly a;
    int main(){
    	init_w(),init();
    	n=read(),m=read();
    	a.resize(n);
    	for(int i=0;i<n;i++)a[i]=read();
    	a=ksm(a,m,n);
    	for(int i=0;i<n;i++)cout<<a[i]<<" ";
    }
    
  • 相关阅读:
    ISC2016训练赛 phrackCTF--Classical CrackMe
    JCTF 2014 小菜一碟
    攻防世界--ReverseMe-120
    lstm torch
    pandas 处理 纽约签到数据集
    python datatime
    tf.keras 模型 多个输入 tf.data.Dataset
    python **kwarg和*args
    java 优先队列 大根堆
    python总结
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328656.html
Copyright © 2020-2023  润新知