• 【LOJ #2565】「SDOI2018」旧试题(莫比乌斯反演/三元环计数)


    传送门

    首先在sdoi2015sdoi2015约数个数和中有结论

    d(ij)=pikj[gcd(i,j)==1]d(ij)=sum_{p|i}sum_{k|j}[gcd(i,j)==1]

    证明很简单,考虑每个质数p,i=ipa,j=jpbp,i=i'*p^a,j=j'*p^b,在d(ij)d(ij)中的贡献为a+b+1a+b+1
    对于后面那个式子的贡献也是a+b+1a+b+1,所以是对的

    对于d(ijk)d(ijk)类似的pitjlk[gcd(p,t)=1][gcd(t,l)=1][gcd(p,l)=1]sum_{p|i}sum_{t|j}sum_{l|k}[gcd(p,t)=1][gcd(t,l)=1][gcd(p,l)=1]

    于是可以莫反了

    若设f(x,y)=xiyi,L=max(A,B,C)f(x,y)=sum_{x|i}frac y i,L=max(A,B,C)
    则最后推出来就是
    i=1min(A,B)j=1min(A,C)k=1min(B,C)μ(i)μ(j)μ(k)f(lcm(i,j),A)f(lcm(i,k),B)f(lcm(j,k),C)sum_{i=1}^{min(A,B)}sum_{j=1}^{min(A,C)}sum_{k=1}^{min(B,C)}mu(i)mu(j)mu(k)f(lcm(i,j),A)f(lcm(i,k),B)f(lcm(j,k),C)
    循环上界改成max(A,B,C)max(A,B,C)显然是不会有影响的,因为f(x,y)(x>y)=0f(x,y)(x>y)=0
    f(x,y)=xiyi=i=1yxyix=i=1yxyxif(x,y)=sum_{x|i}frac y i=sum_{i=1}^{frac y x}frac y{ix}=sum_{i=1}^{frac y x}frac{frac{y}{x}}{i}
    f(x)=i=1xxif(x)=sum_{i=1}^xfrac x i
    原式可以写作

    i=1Lj=1Lk=1Lμ(i)μ(j)μ(k)f(lcm(i,j)A)f(lcm(i,k)B)f(lcm(j,k)C)sum_{i=1}^{L}sum_{j=1}^{L}sum_{k=1}^{L}mu(i)mu(j)mu(k)f(frac{lcm(i,j)}A)f(frac{lcm(i,k)}B)frac{f(lcm(j,k)}C)

    考虑这东西仍然没法做
    考虑把所有μmu有值的数提出来看做点
    如果两个数i,ji,j满足lcm(i,j)Llcm(i,j)le L就把他们之间连一条边
    那么实际上要统计的就是所有三元环

    然后你写一发发现A,B,C=1e5A,B,C=1e5时加上自环边数是821535821535
    于是可以愉快的写三元环计数了
    i,j,ki,j,k中有相等的情况单独算一下

    至于建边,可以先枚举gcdgcd,然后再枚举i,ji,j满足gcd(i,j)=1gcd(i,j)=1
    这样复杂度差不多是nlog3nnlog^3n,可能还要小一点,nn大概是60000左右

    然后就可以O(nlog3n+mm)O(nlog^3n+msqrt m)做完了

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define re register
    #define pb push_back
    #define pii pair<int,int>
    #define ll long long
    #define fi first
    #define se second
    #define bg begin
    cs int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ib==ob)?EOF:*ib++;
    }
    inline int read(){
        char ch=gc();
        int res=0;bool f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    cs int mod=1e9+7;
    inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
    inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
    inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
    inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
    inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
    inline int Inv(int x){return ksm(x,mod-2);}
    cs int N=100005;
    struct edge{
    	int u,v,w;
    	edge(int a=0,int b=0,int c=0):u(a),v(b),w(c){}
    }E[N*20+1]; 
    vector<pii> e[N];
    ll f[N];
    int pr[N],tot,mu[N];
    bitset<N> vis;
    inline void init(cs int len=N-5){
    	mu[1]=1;
    	for(int i=2;i<=len;i++){
    		if(!vis[i])pr[++tot]=i,mu[i]=-1;
    		for(int j=1;j<=tot&&i*pr[j]<=len;j++){
    			vis[i*pr[j]]=1;
    			if(i%pr[j]==0)break;
    			mu[i*pr[j]]=-mu[i];
    		}
    	}
    	for(int i=1;i<=len;i++)
    	for(int j=i;j<=len;j+=i)f[j]++;
    	for(int i=1;i<=len;i++)f[i]+=f[i-1];
    }
    int vt[N],cnt,a,b,c,lim,deg[N];
    inline void clear(){
    	cnt=0;
    	for(int i=1;i<=lim;i++)deg[i]=0,e[i].clear();
    }
    inline int gcd(int a,int b){
    	return b?gcd(b,a%b):a;
    }
    inline ll calc1(int u,int lcm){
    	return (f[a/lcm]*f[b/lcm]*f[c/u]+f[a/lcm]*f[b/u]*f[c/lcm]+f[a/u]*f[b/lcm]*f[c/lcm]);	
    }
    inline ll calc2(int l1,int l2,int l3){
    	return (f[a/l1]*f[b/l2]*f[c/l3]+f[a/l1]*f[b/l3]*f[c/l2]+f[a/l2]*f[b/l1]*f[c/l3]+f[a/l2]*f[b/l3]*f[c/l1]+f[a/l3]*f[b/l1]*f[c/l2]+f[a/l3]*f[b/l2]*f[c/l1]);
    }
    inline void solve(){
    	a=read(),b=read(),c=read();
    	if(a>=b&&a>=c)lim=max(b,c);
    	if(b>=a&&b>=c)lim=max(a,c);
    	if(c>=a&&c>=b)lim=max(a,b);
    	lim=max(max(a,b),c);
    	ll res=0;
    	for(int g=1;g<=lim;g++)if(mu[g]){
    		for(int i=1,L=lim/g;i<=L;i++)if(mu[i*g]){
    			for(int j=i+1,L2=lim/(g*i);j<=L2;j++)if(mu[j*g]&&gcd(i,j)==1){
    				int u=i*g,v=j*g,lcm=i*j*g;
    				deg[u]++,deg[v]++,E[++cnt]=edge(u,v,lcm);
    				res+=calc1(u,lcm)*mu[u]*mu[u]*mu[v]+calc1(v,lcm)*mu[v]*mu[v]*mu[u];
    			}
    		}
    	}
    	for(int i=1;i<=lim;i++)res+=mu[i]*f[a/i]*f[b/i]*f[c/i];
    	for(int u,v,i=1;i<=cnt;i++){
    		u=E[i].u,v=E[i].v;
    		if(deg[u]>deg[v])e[u].pb(pii(v,E[i].w));
    		else e[v].pb(pii(u,E[i].w));
    	}
    	for(int u=1;u<=lim;u++)if(mu[u]){
    		for(pii &x:e[u])vt[x.fi]=x.se;
    		for(pii &x:e[u])if(mu[x.fi]){
    			int v=x.fi;
    			for(pii &z:e[v])if(mu[z.fi]){
    				int w=z.fi;if(!vt[w])continue;
    				res+=calc2(vt[w],x.se,z.se)*mu[u]*mu[v]*mu[w];
    			}
    		}
    		for(pii &x:e[u])vt[x.fi]=0;
    	}
    	cout<<(res%mod+mod)%mod<<'
    ';
    	clear();
    }
    int main(){
    	#ifdef Stargazer
    	freopen("lx.in","r",stdin);
    	#endif
    	init();
    	int T=read();
    	while(T--)solve();
    }
    
  • 相关阅读:
    PHP面试总结
    yii2-dingtalk 钉钉群机器人
    分布式锁机制原理及实现方式
    strtotime的一个使用问题
    JavaScript的程序构成
    libsvm源码凝视+算法描写叙述:svm_train
    android事件分发(二)
    Windows 上通过本地搭建 Jekyll环境
    重点:用户画像
    easyui英文提示变中文
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328320.html
Copyright © 2020-2023  润新知