问题描述
小明在玩一个电脑游戏,游戏在一个n×m的方格图上进行,小明控制的角色开始的时候站在第一行第一列,目标是前往第n行第m列。
方格图上有一些方格是始终安全的,有一些在一段时间是危险的,如果小明控制的角色到达一个方格的时候方格是危险的,则小明输掉了游戏,如果小明的角色到达了第n行第m列,则小明过关。第一行第一列和第n行第m列永远都是安全的。
每个单位时间,小明的角色必须向上下左右四个方向相邻的方格中的一个移动一格。
经过很多次尝试,小明掌握了方格图的安全和危险的规律:每一个方格出现危险的时间一定是连续的。并且,小明还掌握了每个方格在哪段时间是危险的。
现在,小明想知道,自己最快经过几个时间单位可以达到第n行第m列过关。
方格图上有一些方格是始终安全的,有一些在一段时间是危险的,如果小明控制的角色到达一个方格的时候方格是危险的,则小明输掉了游戏,如果小明的角色到达了第n行第m列,则小明过关。第一行第一列和第n行第m列永远都是安全的。
每个单位时间,小明的角色必须向上下左右四个方向相邻的方格中的一个移动一格。
经过很多次尝试,小明掌握了方格图的安全和危险的规律:每一个方格出现危险的时间一定是连续的。并且,小明还掌握了每个方格在哪段时间是危险的。
现在,小明想知道,自己最快经过几个时间单位可以达到第n行第m列过关。
输入格式
输入的第一行包含三个整数n, m, t,用一个空格分隔,表示方格图的行数n、列数m,以及方格图中有危险的方格数量。
接下来t行,每行4个整数r, c, a, b,表示第r行第c列的方格在第a个时刻到第b个时刻之间是危险的,包括a和b。游戏开始时的时刻为0。输入数据保证r和c不同时为1,而且当r为n时c不为m。一个方格只有一段时间是危险的(或者说不会出现两行拥有相同的r和c)。
接下来t行,每行4个整数r, c, a, b,表示第r行第c列的方格在第a个时刻到第b个时刻之间是危险的,包括a和b。游戏开始时的时刻为0。输入数据保证r和c不同时为1,而且当r为n时c不为m。一个方格只有一段时间是危险的(或者说不会出现两行拥有相同的r和c)。
输出格式
输出一个整数,表示小明最快经过几个时间单位可以过关。输入数据保证小明一定可以过关。
样例输入
3 3 3
2 1 1 1
1 3 2 10
2 2 2 10
2 1 1 1
1 3 2 10
2 2 2 10
样例输出
6
样例说明
第2行第1列时刻1是危险的,因此第一步必须走到第1行第2列。
第二步可以走到第1行第1列,第三步走到第2行第1列,后面经过第3行第1列、第3行第2列到达第3行第3列。
第二步可以走到第1行第1列,第三步走到第2行第1列,后面经过第3行第1列、第3行第2列到达第3行第3列。
评测用例规模与约定
前30%的评测用例满足:0 < n, m ≤ 10,0 ≤ t < 99。
所有评测用例满足:0 < n, m ≤ 100,0 ≤ t < 9999,1 ≤ r ≤ n,1 ≤ c ≤ m,0 ≤ a ≤ b ≤ 100。
所有评测用例满足:0 < n, m ≤ 100,0 ≤ t < 9999,1 ≤ r ≤ n,1 ≤ c ≤ m,0 ≤ a ≤ b ≤ 100。
分析:
典型的BFS
n,m<=100,0 ≤ a ≤ b ≤ 100 所以最终到达终点的时间<300,棋盘的大小为100*100 如果对每个时刻都存一次地图,空间使用为3e6 可行!
搜索的过程可以回头,如果不设置vis标记是否已访问节点,那么搜索的节点数会指数级增长,对每个时间点设置一个vis数组,这样防止重复节点入队
#include <bits/stdc++.h> using namespace std; const int maxn = 105; int n,m,r,c,a,b,t; int mp[maxn*3][maxn][maxn]; int vis[maxn*3][maxn][maxn]; struct node { int x,y,time; node(){} node(int a,int b,int c){x=a;y=b;time=c;} }; int dx[]={0,0,1,-1}; int dy[]={1,-1,0,0}; queue<node>q; void bfs() { q.push(node(1,1,0)); vis[0][1][1] = 1; while(!q.empty()) { node now = q.front(); q.pop(); int t=now.time,x=now.x,y=now.y; for(int i=0;i<4;i++) { int yy = y+dy[i],xx=x+dx[i]; if(xx<1||xx>n||yy<1||yy>m||vis[t+1][xx][yy]||mp[t+1][xx][yy]) continue; if(xx==n&&yy==m) { cout<<t+1<<endl; return ; } q.push(node(xx,yy,t+1)); vis[t+1][xx][yy]=1; } } } int main() { cin>>n>>m>>t; while(t--) { cin>>r>>c>>a>>b; for(int i=a;i<=b;i++) mp[i][r][c] = 1; } bfs(); return 0; }