• SparkCore的调优之Shuffle调优


    https://www.cnblogs.com/ssyfj/p/12615298.html

    转载自:https://www.cnblogs.com/qingyunzong/p/8954552.html

    一:概述

    大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO、序列化、网络数据传输等操作。

    因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优。

    但是也必须提醒大家的是,影响一个Spark作业性能的因素,主要还是代码开发、资源参数以及数据倾斜,shuffle调优只能在整个Spark的性能调优中占到一小部分而已。因此大家务必把握住调优的基本原则,千万不要舍本逐末。下面我们就给大家详细讲解shuffle的原理,以及相关参数的说明,同时给出各个参数的调优建议。

    二:Shuffle的定义

    Spark的运行主要分为2部分:

      一部分是驱动程序,其核心是SparkContext;

      另一部分是Worker节点上Task,它是运行实际任务的。程序运行的时候,Driver和Executor进程相互交互:运行什么任务,即Driver会分配Task到Executor,Driver 跟 Executor 进行网络传输; 任务数据从哪儿获取,即Task要从 Driver 抓取其他上游的 Task 的数据结果,所以有这个过程中就不断的产生网络结果。其中,下一个 Stage 向上一个 Stage 要数据这个过程,我们就称之为 Shuffle

    三:ShuffleManager概述

    在Spark的源码中,负责shuffle过程的执行、计算和处理的组件主要就是ShuffleManager,也即shuffle管理器。而随着Spark的版本的发展,ShuffleManager也在不断迭代,变得越来越先进。

    在Spark 1.2以前,默认的shuffle计算引擎是HashShuffleManager。HashShuffleManager有着一个非常严重的弊端,就是会产生大量的中间磁盘文件,进而由大量的磁盘IO操作影响了性能。

    因此在Spark 1.2以后的版本中,默认的ShuffleManager改成了SortShuffleManager。SortShuffleManager相较于HashShuffleManager来说,有了一定的改进。主要就在于,每个Task在进行shuffle操作时,虽然也会产生较多的临时磁盘文件,但是最后会将所有的临时文件合并(merge)成一个磁盘文件,因此每个Task就只有一个磁盘文件。在下一个stage的shuffle read task拉取自己的数据时,只要根据索引读取每个磁盘文件中的部分数据即可

    下面我们详细分析一下HashShuffleManager和SortShuffleManager的原理。

    四:HashShuffleManager的运行原理

    https://www.cnblogs.com/ssyfj/p/12605435.html

    (一)未经优化的HashShuffleManager

    1.假如现在在一个节点上由2个shufflemapTask在执行,但是这个节点的core的数量数1,在远端有3个resultTask等待接收shuffleMapTask的数据进行处理

    2.这样每一个节点可以有1个shufflemaptask可以同时执行,在每一个shufflemaptask下面都会产生3个bucket,这是为什么呢,因为每一个shufflemaptask都会为每一个resulttask建立一个数据分区,但是这个bucket是在内存中的当数量达到一定的阈值的时候就会把数据写入本地的磁盘当中也就是shuffleblockfile。

    3.shufflemaptask的输出会作为mapstatus发送到DAGscheduler上面mapoutputTracker上面的Master上面去。

    4.在resultTask需要拉取数据的时候会去找mapstatus然后使用BlockManager把数据拉取到本地。(到这儿有没有觉得这和MapReduce的执行过程简直就是一样的,其实不然他们还是有那么一点区别,MapReduce在shuffle阶段需要把数据完全存储完之后才把reduce采取拉取数据,但是spark的shuffle阶段不需要这样,shufflemaptask可以一边把数据写入本地的缓存,resultTask可以一边读取数据,这样的操作的速度是不是比mapreduce快,这是为什么呢,因为在hadoop的MapReduce阶段存在在分区内按照key排序,这就是为啥不能像spark的shuffle的原因)

    5.假如有1000个shufflemaptask,1000个resultTask那么就会产生100万个磁盘文件,这样在会进行多次的磁盘io,由于磁盘io速度很慢,这样磁盘io就会严重的降低了整个系统的性能。

    (二)优化后的HashShuffleManager

    上图说明了优化后的HashShuffleManager的原理:

    这里说的优化,是指我们可以设置一个参数,spark.shuffle.consolidateFiles。该参数默认值为false,将其设置为true即可开启优化机制。通常来说,如果我们使用HashShuffleManager,那么都建议开启这个选项。

    开启consolidate机制之后,在shuffle write过程中,task就不是为stage的resulttask创建一个磁盘文件了。

    此时会出现shuffleFileGroup的概念,(这里的shuffleFileGroup是每一个节点对应一个shuffleFileGroup)每个shuffleFileGroup会对应一批磁盘文件,磁盘文件的数量与下游stage的resulttask数量是相同的。

    一个Executor上有多少个CPU core,就可以并行执行多少个task。

    第一批并行执行的每个task都会创建一个shuffleFileGroup,并将数据写入对应的磁盘文件内。

    当Executor的CPU core执行完一批task,接着执行下一批task时,下一批task就会复用之前已有的shuffleFileGroup,包括其中的磁盘文件。

    也就是说,此时task会将数据写入已有的磁盘文件中,而不会写入新的磁盘文件中。

    因此,consolidate机制允许不同的task复用同一批磁盘文件,这样就可以有效将多个task的磁盘文件进行一定程度上的合并,从而大幅度减少磁盘文件的数量,进而提升shuffle write的性能。

    假设第二个stage有100个resulttask,第一个stage有50个shufflemaptask,总共还是有10个Executor,每个Executor执行5个task。那么原本使用未经优化的HashShuffleManager时,每个Executor会产生500个磁盘文件,所有Executor会产生100resulttask*50shufflemaptask=5000个磁盘文件的。但是此时经过优化之后,每个Executor创建的磁盘文件的数量的计算公式为:Executor数 * CPU core的数量 * 下一个stage的resulttask数量。也就是说,每个Executor此时只会创建100个磁盘文件,所有Executor只会创建1000个磁盘文件。

    五:SortShuffleManager运行原理

    SortShuffleManager的运行机制主要分成两种,一种是普通运行机制,另一种是bypass运行机制。当shuffle read task的数量小于等于spark.shuffle.sort.bypassMergeThreshold参数的值时(默认为200),就会启用bypass机制。

    (一)普通运行机制

    上图说明了普通的SortShuffleManager的原理。在该模式下,数据会先写入一个内存数据结构中,此时根据不同的shuffle算子,可能选用不同的数据结构。如果是reduceByKey这种聚合类的shuffle算子,那么会选用Map数据结构,一边通过Map进行聚合,一边写入内存;如果是join这种普通的shuffle算子,那么会选用Array数据结构,直接写入内存。接着,每写一条数据进入内存数据结构之后,就会判断一下,是否达到了某个临界阈值。如果达到临界阈值的话,那么就会尝试将内存数据结构中的数据溢写到磁盘,然后清空内存数据结构

    在溢写到磁盘文件之前,会先根据key对内存数据结构中已有的数据进行排序排序过后,会分批将数据写入磁盘文件默认的batch数量是10000条,也就是说,排序好的数据,会以每批1万条数据的形式分批写入磁盘文件。写入磁盘文件是通过Java的BufferedOutputStream实现的。BufferedOutputStream是Java的缓冲输出流,首先会将数据缓冲在内存中,当内存缓冲满溢之后再一次写入磁盘文件中,这样可以减少磁盘IO次数,提升性能

    一个task将所有数据写入内存数据结构的过程中,会发生多次磁盘溢写操作,也就会产生多个临时文件最后会将之前所有的临时磁盘文件都进行合并,这就是merge过程,此时会将之前所有临时磁盘文件中的数据读取出来,然后依次写入最终的磁盘文件之中此外,由于一个task就只对应一个磁盘文件,也就意味着该task为下游stage的task准备的数据都在这一个文件中,因此还会单独写一份索引文件,其中标识了下游各个task的数据在文件中的start offset与end offset。

    SortShuffleManager由于有一个磁盘文件merge的过程,因此大大减少了文件数量。比如第一个stage有50个shufflemaptask------(总共有10个Executor,每个Executor执行5个task),而第二个stage有100个resulttask。由于每个task最终只有一个磁盘文件,因此此时每个Executor上只有5个磁盘文件,所有Executor只有50个磁盘文件。

    (二)bypass运行机制

    上图说明了bypass SortShuffleManager的原理。bypass运行机制的触发条件如下:

    • shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold参数的值。
    • 不是聚合类的shuffle算子(比如reduceByKey)。

    此时task会为每个下游task都创建一个临时磁盘文件,并将数据按key进行hash然后根据key的hash值,将key写入对应的磁盘文件之中。当然,写入磁盘文件时也是先写入内存缓冲,缓冲写满之后再溢写到磁盘文件的。最后,同样会将所有临时磁盘文件都合并成一个磁盘文件,并创建一个单独的索引文件。

    该过程的磁盘写机制其实跟未经优化的HashShuffleManager是一模一样的,因为都要创建数量惊人的磁盘文件,只是在最后会做一个磁盘文件的合并而已。因此少量的最终磁盘文件,也让该机制相对未经优化的HashShuffleManager来说,shuffle read的性能会更好。

    该机制与普通SortShuffleManager运行机制的不同在于:第一,磁盘写机制不同;第二,不会进行排序。也就是说,启用该机制的最大好处在于,shuffle write过程中,不需要进行数据的排序操作,也就节省掉了这部分的性能开销。

    六:shuffle相关参数调优 

    以下是Shffule过程中的一些主要参数,这里详细讲解了各个参数的功能、默认值以及基于实践经验给出的调优建议。

    Spark各个版本的参数默认值可能会有不同,具体使用请参考官方网站的说明:

    (1)先选择对应的Spark版本:http://spark.apache.org/documentation.html

    (2)再查看对应的文档说明

    (一)spark.shuffle.file.buffer

    • 默认值:32k
    • 参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘
    • 调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

    (二)spark.reducer.maxSizeInFlight

    • 默认值:48m
    • 参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据
    • 调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

    (三)spark.shuffle.io.maxRetries

    • 默认值:3
    • 参数说明:shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。
    • 调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。

    (四)spark.shuffle.io.retryWait

    • 默认值:5s
    • 参数说明:具体解释同上,该参数代表了每次重试拉取数据的等待间隔,默认是5s。
    • 调优建议:建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。

    (五)spark.shuffle.memoryFraction(已经弃用)

    • 默认值:0.2
    • 参数说明:该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。
    • 调优建议:在资源参数调优中讲解过这个参数。如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。

    (六)spark.shuffle.manager(已经弃用)

    • 默认值:sort
    • 参数说明:该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。
    • 调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。

    (七)spark.shuffle.sort.bypassMergeThreshold

    • 默认值:200
    • 参数说明:当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
    • 调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。

    (八)spark.shuffle.consolidateFiles(已经弃用)

    • 默认值:false
    • 参数说明:如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件,对于shuffle read task数量特别多的情况下,这种方法可以极大地减少磁盘IO开销,提升性能。
    • 调优建议:如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。
  • 相关阅读:
    python调用linux DBus
    python查看单个应用的内存
    Azkaban
    H2 数据库引擎
    【IDEA与sql执行计划】
    【用draw.io 绘制ER图,非鸭蛋型ER图~】
    MySQL&Oracle数据库进阶学习【未完】
    【关于Typora 在线图床配置】
    什么是文件描述符
    同步个人vs code 习惯性配置 到码云(Gitee)
  • 原文地址:https://www.cnblogs.com/ssyfj/p/12629568.html
Copyright © 2020-2023  润新知