题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214
题意:求边数最小的割。
解法:
建边的时候每条边权 w = w * (E + 1) + 1;
这样得到最大流 maxflow / (E + 1) ,最少割边数 maxflow % (E + 1)
道理很简单,如果原先两类割边都是最小割,那么求出的最大流相等
但边权变换后只有边数小的才是最小割了
但边权变换后只有边数小的才是最小割了
乘(E+1)是为了保证边数叠加后依然是余数,不至于影响求最小割的结果
因为假设最小割=k,那么现在新图的最小割为k*(E+1)+p,p为割的边数,本质上是,原来你割一条边,需要代价,
由于你要求边数最小 所以你多割一条边,就多一的代价,但是这个代价不足以影响到原来的代价。
原来割一条边,代价xi,现在割一条边,代价xi*A+1,只要让A>m+1,m为边数,即使割了所有的边,自己加上去的代价也就m
在QQ群里还看到一种解法,就是跑2次Dinic,这个显然是不对的吧。。最小割一定是满流,但是漫流的不一定是最小割吧。。。
#include <bits/stdc++.h> using namespace std; const int maxn = 410; const int maxm = 50010; const int inf = 0x3f3f3f3f; struct G { int v, cap, next; G() {} G(int v, int cap, int next) : v(v), cap(cap), next(next) {} } E[maxm]; int p[maxn], T; int d[maxn], temp_p[maxn], qw[maxn]; //d顶点到源点的距离标号,temp_p当前狐优化,qw队列 void init() { memset(p, -1, sizeof(p)); T = 0; } void add(int u, int v, int cap) { E[T] = G(v, cap, p[u]); p[u] = T++; E[T] = G(u, 0, p[v]); p[v] = T++; } bool bfs(int st, int en, int n) { int i, u, v, head, tail; for(i = 0; i <= n; i++) d[i] = -1; head = tail = 0; d[st] = 0; qw[tail] = st; while(head <= tail) { u = qw[head++]; for(i = p[u]; i + 1; i = E[i].next) { v = E[i].v; if(d[v] == -1 && E[i].cap > 0) { d[v] = d[u] + 1; qw[++tail] = v; } } } return (d[en] != -1); } int dfs(int u, int en, int f) { if(u == en || f == 0) return f; int flow = 0, temp; for(; temp_p[u] + 1; temp_p[u] = E[temp_p[u]].next) { G& e = E[temp_p[u]]; if(d[u] + 1 == d[e.v]) { temp = dfs(e.v, en, min(f, e.cap)); if(temp > 0) { e.cap -= temp; E[temp_p[u] ^ 1].cap += temp; flow += temp; f -= temp; if(f == 0) break; } } } return flow; } int dinic(int st, int en, int n) { int i, ans = 0; while(bfs(st, en, n)) { for(i = 0; i <= n; i++) temp_p[i] = p[i]; ans += dfs(st, en, inf); } return ans; } int main() { int T, n, m; scanf("%d", &T); while(T--) { scanf("%d %d", &n,&m); init(); int s, t; scanf("%d %d", &s, &t); for(int i=1; i<=m; i++){ int u, v, w; scanf("%d %d %d", &u,&v,&w); add(u, v, w*(m+1)+1); } int ans = dinic(s, t, n+1); printf("%d ", ans%(m+1)); } return 0; }