• weighted choice in python


    对列表按概率采样

    • Input: a collection C of elements and a probability distribution p over C;
    • Output: an element chosen at random from C according to p.

    C有n 个元素,1-n, 概率 (p = (p[1], ..., p[n])。 我们只有random.random()函数,它会给我们均匀分布的[0,1]上的一个float. 基本思想是分割[0,1]into n segments of length p[1] ... p[n] ( ∑ p[i] = 1) . 如果均匀地在[0,1]上打点,那它在第i个segment上停住的概率就是p[i]. 因此可以用random.random()函数来实现。查看停止的地方在[0,1]的哪个位置,然后返回其所在的那个segment index. python如下实现:

    ref: https://scaron.info/blog/python-weighted-choice.html

    对列表按概率采样

    import random
    import collections
    
    def weighted_choice(seq, weights):
        assert len(weights) == len(seq)
        assert abs(1. - sum(weights)) < 1e-6
    
        x = random.random()
        for i, elmt in enumerate(seq):
            if x <= weights[i]:
                return elmt
            x -= weights[i]
    
    def gen_weight_list(seq, gt_set, incline_ratio):
        '''
        :param seq:
        :param gt_list:
        :param incline_ratio:
        :return:
        seqe = [1,2,3,4,5]
        gt_list = [3,5,7]
        # incline_ratio = 0.9   # allocate this num of prob for random select gt's in sequence
        '''
        len_seq = len(seq)
        # programmatic gen the prob list:
        prob_list = []
        gts_in_seq = [i for i in seq if i in gt_set]
        len_gts_in_seq = len(gts_in_seq)
        # item_ngt_in_seq = [i for i in seqe if i not in gt_list]
        if len_gts_in_seq > 0:
            prob_gt = incline_ratio/len_gts_in_seq
            prob_ngt = (1-incline_ratio)/(len_seq - len_gts_in_seq)
        else:
            prob_gt = 0
            prob_ngt = 1/len_seq
    
        for idx in range(len_seq):
            if seq[idx] in gts_in_seq:
                # prob_list[idx] = prob_gt
                prob_list.append(prob_gt)
            else:
                # prob_list[idx] = prob_ngt
                prob_list.append(prob_ngt)
    
        return prob_list
    
    # add prob incline ratio for allocate heavier weight udr some conditions:
    seqe = [1,2,3,4,5]
    gt_set = set([3,5,7])    # conditions, if item in seq is also in this list, will be allocated higher weight.
    inc_ratio = 0.8   # allocate this num of prob for random select gt's in sequence
    
    prob = gen_weight_list(seqe, gt_set, inc_ratio)
    select_seq = []
    
    for i in range(10000):
        select_seq.append(weighted_choice(seqe, prob))
    
    # count the item in select_seq:
    select_seq.sort(reverse=True)     #optional?
    item_Count = collections.Counter(select_seq)
    print(item_Count)
    
  • 相关阅读:
    hdu3613(扩展KMP)
    hdu4333(扩展KMP)
    poj 2185
    指数型母函数
    java高精度hdu4043
    卡特兰数简单应用
    hdu3625(第一类斯特林数)
    卡特兰数和斯特林数(转载)
    hdu4045(递推)
    java 中sendredirect()和forward()方法的区别
  • 原文地址:https://www.cnblogs.com/sonictl/p/11652848.html
Copyright © 2020-2023  润新知