tf.nn.bias_add(value,bias,data_format=None,name=None)
参数:
value:一个Tensor,类型为float,double,int64,int32,uint8,int16,int8,complex64,或complex128.
bias:一个 1-D Tensor,其大小与value的最后一个维度匹配;必须和value是相同的类型,除非value是量化类型,在这种情况下可以使用不同的量化类型.
data_format:一个字符串,支持'NHWC'和'NCHW'.
name:操作的名称(可选).
返回:
与value具有相同类型的Tensor.
将bias添加到value.
这是tf.add的一种特殊情况,其中bias被限制为1-d.支持广播,因此value可以有任意数量的维度.
与tf.add不同的是,在两种类型都是量化的情况下,bias类型允许与value不同.
sample
import tensorflow as tf
a=tf.constant([[1,1],[2,2],[3,3]],dtype=tf.float32)
b=tf.constant([1,-1],dtype=tf.float32)
c=tf.constant([1],dtype=tf.float32)
with tf.Session() as sess:
print('bias_add:')
print(sess.run(tf.nn.bias_add(a, b)))
#执行下面语句错误
#print(sess.run(tf.nn.bias_add(a, c)))
print('add:')
print(sess.run(tf.add(a, c)))
output
bias_add:
[[ 2. 0.]
[ 3. 1.]
[ 4. 2.]]
add:
[[ 2. 2.]
[ 3. 3.]
[ 4. 4.]]