一. kafka 处理增量消息
kafka 原理介绍:https://www.cnblogs.com/xifenglou/p/7251112.html
https://blog.csdn.net/z69183787/article/details/80325743
很好的一篇文章:http://www.jasongj.com/2015/01/02/Kafka%E6%B7%B1%E5%BA%A6%E8%A7%A3%E6%9E%90/
使用场景:
- 日志收集:一个公司可以用Kafka可以收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。
- 消息系统:解耦和生产者和消费者、缓存消息等。
- 用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,通常这些活动信息被各个服务器发布到kafka的 topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。
- 运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。
- 流式处理:比如spark streaming和storm
- 事件源
二. 大数据处理 : storm flink
三. mongo
四. leveldb
五. redis