• 图像处理 之 同态滤波


    借别人的代码,出处,忘记了,好像是一个毕业设计:

     这个滤波器设计的好像过了! 


    double D0=180;


    void ILPF(CvMat* src, const double D0)
    {
    int i, j;
    int state = -1;
    double tempD;
    long width, height;
    width = src->width;
    height = src->height;

    long x, y;
    x = width / 2;
    y = height / 2;

    CvMat* H_mat;
    H_mat = cvCreateMat(src->height,src->width, CV_64FC2);
    for(i = 0; i < height; i++)
    {
    for(j = 0; j < width; j++)
    {
    if(i > y && j > x)
    {
    state = 3;
    }
    else if(i > y)
    {
    state = 1;
    }
    else if(j > x)
    {
    state = 2;
    }
    else
    {
    state = 0;
    }

    switch(state)
    {
    case 0:
    tempD = (double) (i * i + j * j);tempD = sqrt(tempD);break;
    case 1:
    tempD = (double) ((height - i) * (height - i) + j * j);tempD = sqrt(tempD);break;
    case 2:
    tempD = (double) (i * i + (width - j) * (width - j));tempD = sqrt(tempD);break;
    case 3:
    tempD = (double) ((height - i) * (height - i) + (width - j) * (width - j));tempD = sqrt(tempD);break;
    default:
    break;
    }

    //二维高斯高通滤波器

    tempD = 1 - exp(-0.5 * pow(tempD / D0, 2));
    ((double*)(H_mat->data.ptr + H_mat->step * i))[j * 2] = tempD;
    ((double*)(H_mat->data.ptr + H_mat->step * i))[j * 2 + 1] = 0.0;

    //////二维理想高通滤波器

    //if(tempD <= D0)
    //{
    // ((double*)(H_mat->data.ptr + H_mat->step * i))[j * 2] = 0.0;
    // ((double*)(H_mat->data.ptr + H_mat->step * i))[j * 2 + 1] = 0.0;
    //}
    //else
    //{
    // ((double*)(H_mat->data.ptr + H_mat->step * i))[j * 2] = 1.0;
    // ((double*)(H_mat->data.ptr + H_mat->step * i))[j * 2 + 1] = 0.0;
    //}


    // //2阶巴特沃思高通滤波器
    // tempD = 1 / (1 + pow(D0 / tempD, 2 * 2));
    // ((double*)(H_mat->data.ptr + H_mat->step * i))[j * 2] = tempD;
    // ((double*)(H_mat->data.ptr + H_mat->step * i))[j * 2 + 1] = 0.0;

    // //增长率为2二维指数高通滤波器
    // tempD = exp(-pow(D0 / tempD, 2));
    // ((double*)(H_mat->data.ptr + H_mat->step * i))[j * 2] = tempD;
    // ((double*)(H_mat->data.ptr + H_mat->step * i))[j * 2 + 1] = 0.0;


    }
    }

    cvMulSpectrums(src, H_mat, src, CV_DXT_ROWS);
    cvReleaseMat(&H_mat);

    }

    void CMipImagePro::TongTai_Filter(IplImage* pCelGrayImg)
    {

    unsigned int i;
    CString str;

    IplImage* im = pCelGrayImg;

    IplImage * realInput;
    IplImage * imaginaryInput;
    IplImage * complexInput;
    int dft_M, dft_N;
    CvMat* dft_A, tmp, *dft_B;
    IplImage * image_Re;
    IplImage * image_Im;
    double m, M;


    realInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1);
    imaginaryInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1);
    complexInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 2);

    cvScale(im, realInput, 1.0, 0.0);
    cvZero(imaginaryInput);
    cvMerge(realInput, imaginaryInput, NULL, NULL, complexInput);

    dft_M = cvGetOptimalDFTSize( im->height - 1 );
    dft_N = cvGetOptimalDFTSize( im->width - 1 );
    dft_B = cvCreateMat( dft_M, dft_N, CV_64FC2 );
    dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 );
    cvZero(dft_A);
    cvZero(dft_B);

    image_Re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
    image_Im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);


    cvGetSubRect( dft_A,&tmp, cvRect(0,0, im->width, im->height));
    cvCopy( complexInput, &tmp, NULL );


    cvDFT( dft_A, dft_A, CV_DXT_FORWARD, complexInput->height );

    ILPF(dft_A, D0);


    cvDFT( dft_A, dft_A, CV_DXT_INVERSE , complexInput->height );


    cvNamedWindow("win", 0);
    cvNamedWindow("magnitude", 0);
    cvShowImage("win", im);


    cvSplit( dft_A, image_Re, image_Im, 0, 0 );

    cvMinMaxLoc(image_Re, &m, &M, NULL, NULL, NULL);
    cvScale(image_Re, image_Re, 1.0/(M-m), 1.0*(-m)/(M-m));


    //cvGetSubRect( dft_A,&tmp, cvRect(0,0, im->width, im->height));
    //cvCopy( image_Re, &pCelGrayImg, NULL );

    cvShowImage("magnitude", image_Re);


    }

    作者微信号: xh66i88
  • 相关阅读:
    美国商业经济金融发展史
    英国商业经济金融发展史
    NIO入门
    eclipse的debug
    一些待深入的问题
    Django REST Framework(一) Serializer和ModelSerializer
    同步/异步/阻塞/非阻塞/BIO/NIO/AIO各种情况介绍
    为了后端掌握的粗浅前端
    前后端分离之JWT用户认证
    Redis
  • 原文地址:https://www.cnblogs.com/signal/p/2792753.html
Copyright © 2020-2023  润新知