• hashCode() vs equals() vs ==


    == VS equals()

    ==
    • 基础类型: ==比较的是值
    • 引用类型: ==比较的是对象的内存地址
    equals()

    equals()只能比较引用类型,无法比较基础类型.equals()方法在顶级父类Object中,代码如下:

        public boolean equals(Object obj) {
            return (this == obj);
        }
    

    可以看出这个代码就是判断是否是同一对象.那么,当子类重写 equals()往往都是将属性内容相同的对象认为是同一对象,
    如果子类不直接或间接重写Objectequals()方法,那么调用的equals()==相同.

    String a = new String("aa"); // a 为一个引用
    String b = new String("aa"); // b为另一个引用,对象的内容一样
    String aa = "aa"; // 放在常量池中
    String bb = "aa"; // 从常量池中查找
    System.out.println(aa == bb);// true
    System.out.println(a == b);// false
    System.out.println(a.equals(b));// true
    

    上面代码的String重写了equals(),代码如下:

    public boolean equals(Object anObject) {
            if (this == anObject) {
                return true;
            }
            if (anObject instanceof String) {
                String anotherString = (String)anObject;
                int n = value.length;
                if (n == anotherString.value.length) {
                    char v1[] = value;
                    char v2[] = anotherString.value;
                    int i = 0;
                    while (n-- != 0) {
                        if (v1[i] != v2[i])
                            return false;
                        i++;
                    }
                    return true;
                }
            }
            return false;
        }
    

    hashCode() VS equals()

    • hashCode()函数返回哈希码,确定该对象在哈希表中的索引位置.同样属于Object类中,代码如下:
      public native int hashCode();,native调用C/C++,返回int哈希码.利用哈希码能够快速检索出对象
      HashSet/HashMap会先调用hashCode(),如果哈希码不同,直接判断对象不同,否则进行下面的equals()操作,大大减少了equals()的操作,提高执行速度.(C/C++本身比Java执行快,equals()执行也比hashCode()逻辑复杂)
    • hashCode()返回值相同也不能认为是同一对象,存在hash冲突
    • hashCode 相同,equals()为true才能认为是同一对象
    为什么重写 equals() 时必须重写 hashCode() 方法?
    • 正面:两对象相等,那么hashCode也相等,equals()也为true
    • 反面:重写 equals(),但是不重写hashCode(),会导致equals(),判断是同一个对象,但是哈希码并不同
    • 例子: 重写了equals()方法,不重写hashCode(),同一名学生,添加到hashSet中时候,会添加两次,因为你只是通过属性内容判断的是否为同一对象!!!

    包装类型的常量池

    • Byte/Short/Integer/Long 这 4 种包装类默认创建了数值 [-128,127] 的相应类型的缓存数据
    • Character 创建了数值在 [0,127] 范围的缓存数据
    • Boolean 直接true/false
      源代码如下:
        private static class ByteCache {
        private ByteCache(){}
    
        static final Byte cache[] = new Byte[-(-128) + 127 + 1];
    
        static {
            for(int i = 0; i < cache.length; i++)
                cache[i] = new Byte((byte)(i - 128));
        }
    }
    
        /**
         * Returns a {@code Byte} instance representing the specified
         * {@code byte} value.
         * If a new {@code Byte} instance is not required, this method
         * should generally be used in preference to the constructor
         * {@link #Byte(byte)}, as this method is likely to yield
         * significantly better space and time performance since
         * all byte values are cached.
         *
         * @param  b a byte value.
         * @return a {@code Byte} instance representing {@code b}.
         * @since  1.5
         */
        public static Byte valueOf(byte b) {
            final int offset = 128;
            return ByteCache.cache[(int)b + offset];
        }
    
        private static class ShortCache {
        private ShortCache(){}
    
        static final Short cache[] = new Short[-(-128) + 127 + 1];
    
        static {
            for(int i = 0; i < cache.length; i++)
                cache[i] = new Short((short)(i - 128));
        }
    }
    
        /**
         * Returns a {@code Short} instance representing the specified
         * {@code short} value.
         * If a new {@code Short} instance is not required, this method
         * should generally be used in preference to the constructor
         * {@link #Short(short)}, as this method is likely to yield
         * significantly better space and time performance by caching
         * frequently requested values.
         *
         * This method will always cache values in the range -128 to 127,
         * inclusive, and may cache other values outside of this range.
         *
         * @param  s a short value.
         * @return a {@code Short} instance representing {@code s}.
         * @since  1.5
         */
        public static Short valueOf(short s) {
            final int offset = 128;
            int sAsInt = s;
            if (sAsInt >= -128 && sAsInt <= 127) { // must cache
                return ShortCache.cache[sAsInt + offset];
            }
            return new Short(s);
        }
    
    private static class IntegerCache {
            static final int low = -128;
            static final int high;
            static final Integer cache[];
    
            static {
                // high value may be configured by property
                int h = 127;
                String integerCacheHighPropValue =
                    sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
                if (integerCacheHighPropValue != null) {
                    try {
                        int i = parseInt(integerCacheHighPropValue);
                        i = Math.max(i, 127);
                        // Maximum array size is Integer.MAX_VALUE
                        h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
                    } catch( NumberFormatException nfe) {
                        // If the property cannot be parsed into an int, ignore it.
                    }
                }
                high = h;
    
                cache = new Integer[(high - low) + 1];
                int j = low;
                for(int k = 0; k < cache.length; k++)
                    cache[k] = new Integer(j++);
    
                // range [-128, 127] must be interned (JLS7 5.1.7)
                assert IntegerCache.high >= 127;
            }
    
            private IntegerCache() {}
        }
    
        /**
         * Returns an {@code Integer} instance representing the specified
         * {@code int} value.  If a new {@code Integer} instance is not
         * required, this method should generally be used in preference to
         * the constructor {@link #Integer(int)}, as this method is likely
         * to yield significantly better space and time performance by
         * caching frequently requested values.
         *
         * This method will always cache values in the range -128 to 127,
         * inclusive, and may cache other values outside of this range.
         *
         * @param  i an {@code int} value.
         * @return an {@code Integer} instance representing {@code i}.
         * @since  1.5
         */
        public static Integer valueOf(int i) {
            if (i >= IntegerCache.low && i <= IntegerCache.high)
                return IntegerCache.cache[i + (-IntegerCache.low)];
            return new Integer(i);
        }
    
    private static class LongCache {
            private LongCache(){}
    
            static final Long cache[] = new Long[-(-128) + 127 + 1];
    
            static {
                for(int i = 0; i < cache.length; i++)
                    cache[i] = new Long(i - 128);
            }
        }
    
        /**
         * Returns a {@code Long} instance representing the specified
         * {@code long} value.
         * If a new {@code Long} instance is not required, this method
         * should generally be used in preference to the constructor
         * {@link #Long(long)}, as this method is likely to yield
         * significantly better space and time performance by caching
         * frequently requested values.
         *
         * Note that unlike the {@linkplain Integer#valueOf(int)
         * corresponding method} in the {@code Integer} class, this method
         * is <em>not</em> required to cache values within a particular
         * range.
         *
         * @param  l a long value.
         * @return a {@code Long} instance representing {@code l}.
         * @since  1.5
         */
        public static Long valueOf(long l) {
            final int offset = 128;
            if (l >= -128 && l <= 127) { // will cache
                return LongCache.cache[(int)l + offset];
            }
            return new Long(l);
        }
    

    上面的缓存代码可以完美解释下面的结果:

    Integer a = 10;
    Integer b = 10;
    System.out.println(a == b);// 输出 true
    
    Float c = 10f;
    Float d = 10f;
    System.out.println(c == d);// 输出 false
    
    Double e = 1.2;
    Double f = 1.2;
    System.out.println(e == f);// 输出 false
    
    
    Integer a = 10;
    Integer b = new Integer(10);
    System.out.println(a==b);// false
    //Integer a = 10;=>Integer a=Integer.valueOf(10);使用常量池中的对象,Integer b = new Integer(10);创建新对象
    

    自动装箱与拆箱

    从字节码中,我们发现装箱其实就是调用了 包装类的valueOf()方法,拆箱其实就是调用了 xxxValue()方法。

    • Integer i = 1 等价于 Integer i = Integer.valueOf(1)
    • int n = i 等价于 int n = i.intValue();
    • 如果频繁拆装箱的话,也会严重影响系统的性能。我们应该尽量避免不必要的拆装箱操作。
  • 相关阅读:
    AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)
    基于视觉的机械手控制
    远程图形界面:VncServer与KDE桌面远程连接
    远程图形界面:使用putty+xmin远程登录ubuntu-kde
    CUDA 显存操作:CUDA支持的C++11
    C++11:using 的各种作用
    C++ 模板template和template
    Detectron:Pytorch-Caffe2-Detectron的一些跟进
    TF实战:(Mask R-CNN原理介绍与代码实现)-Chapter-8
    The type javax.servlet.http.HttpServletRequest cannot be resolved.
  • 原文地址:https://www.cnblogs.com/shun998/p/15883610.html
Copyright © 2020-2023  润新知