题意 : 在墙上贴海报, n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000)。求出最后还能看见多少张海报。
分析 : 很容易想到利用线段树来成段置换,最后统计总区间不同数的个数。但是这里有一个问题,就是区间可以很大,线段树开不了那么大的空间,遂想能不能离散化。实际上只记录坐标的相对大小进行离散化最后是不影响我们计算的,但是光是普通的离散化是不行的,就是我们贴海报的实际意义是对(l, r)段进行添加,而不是对于这个区间的点进行添加,是段树不是点树,如果这样普通离散化的话就会出现一个问题,比如数据1-10、1-4、6-10 行的,我们离散化后是1-4、1-2、3-4 ,不离散的结果是 3 但是离散化后再计算就是 2 了!原因就是我们是成段更新而不是点更新,进行添加海报的(l, r)的意义是对这一段进行添加,而离散化之后将原本不相邻的点变成了相邻的点,就导致了上面例子 4 - 6被覆盖了!解决这个问题的方法就是,在离散化的时候,将原本不相邻的两个点中间添加一个数,来表示中间是有“缝隙”的。
AC代码:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define lson l , m , rt << 1 #define rson m + 1 , r , rt << 1 | 1 const int maxn = 21112; bool hash[maxn]; int li[maxn] , ri[maxn]; int X[maxn<<3]; int col[maxn<<4]; int cnt; void PushDown(int rt) { if (col[rt] != -1) { col[rt<<1] = col[rt<<1|1] = col[rt]; col[rt] = -1; } } void update(int L,int R,int c,int l,int r,int rt) { if (L <= l && r <= R) { col[rt] = c; return ; } PushDown(rt); int m = (l + r) >> 1; if (L <= m) update(L , R , c , lson); if (m < R) update(L , R , c , rson); } void query(int l,int r,int rt) { if (col[rt] != -1) { if (!hash[col[rt]]) cnt ++; hash[ col[rt] ] = true; return ; } if (l == r) return ; int m = (l + r) >> 1; query(lson); query(rson); } int Bin(int key,int n,int X[]) { int l = 0 , r = n - 1; while (l <= r) { int m = (l + r) >> 1; if (X[m] == key) return m; if (X[m] < key) l = m + 1; else r = m - 1; } return -1; } int main() { int T , n; scanf("%d",&T); while (T --) { // memset (col,0,sizeof(col)); scanf("%d",&n); int nn = 0; for (int i = 0 ; i < n ; i ++) { scanf("%d%d",&li[i] , &ri[i]); X[nn++] = li[i];///记录所有出现的点 X[nn++] = ri[i]; } sort(X , X + nn); int m = unique(X,X+nn)-X;///去重 ///在不相邻的点中间添加一个数 for (int i = m - 1 ; i > 0 ; i --) { if (X[i] != X[i-1] + 1) X[m ++] = X[i-1] + 1; } sort(X , X + m); memset(col , -1 , sizeof(col)); for (int i = 0 ; i < n ; i ++) { int l = lower_bound(X,X+m,li[i])-X;////在离散化之后的坐标系arr中寻找左端点 int r = lower_bound(X,X+m,ri[i])-X; // int l = Bin(li[i] , m , X); //int r = Bin(ri[i] , m , X); update(l , r , i , 0 , m , 1); } cnt = 0; memset(hash , false , sizeof(hash)); query(0 , m , 1); printf("%d ",cnt); } return 0; }