ETL清洗数据
导Jar包
<dependencies> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>RELEASE</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.7.2</version> </dependency> </dependencies>
ETLUtil.java
public class ETLUtil { public static String etl(String original){ StringBuilder stringBuilder = new StringBuilder(); String[] fields = original.split(" "); if (fields.length < 9){ return null; } //日志合规 //替换空格 fields[3] = fields[3].replace(" ", ""); for (int i = 0; i < fields.length - 1; i++){ if (i == fields.length - 1){ stringBuilder.append(fields[i]); }else if (i < 9){ stringBuilder.append(fields[i]).append(" "); }else { stringBuilder.append(fields[i]).append("&"); } } return stringBuilder.toString(); } }
ETLMapper.java
public class ETLMapper extends Mapper<LongWritable, Text, Text, NullWritable> { Text k = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String original = value.toString(); String etlString = ETLUtil.etl(original); if (StringUtils.isNotEmpty(etlString)){ k.set(etlString); context.write(k, NullWritable.get()); context.getCounter("ETL", "True").increment(1); }else { context.getCounter("ETL", "False").increment(1); } } }
ETLDriver.java
public class ETLDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Job job = Job.getInstance(new Configuration()); job.setJarByClass(ETLDriver.class); job.setMapperClass(ETLMapper.class); job.setNumReduceTasks(0); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(NullWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); boolean b = job.waitForCompletion(true); System.exit(b ? 0 : 1); } }
[kris@hadoop102 hadoop-2.7.2]$ hadoop fs -mkdir -p /guli/user [kris@hadoop102 hadoop-2.7.2]$ hadoop fs -mkdir /guli/video [kris@hadoop102 hadoop-2.7.2]$ hadoop fs -mkdir /guli/etl [kris@hadoop102 datas]$ hadoop fs -moveFromLocal user.txt /guli/user [kris@hadoop102 datas]$ hadoop fs -moveFromLocal *.txt /guli/video [kris@hadoop102 hadoop-2.7.2]$ hadoop jar ETLVideo.jar com.atguigu.etl.ETLDriver /guli/video /guli/video_etl ETL False=5792 True=743569
创建表:
create external table gulivideo_ori(
videoId string,
uploader string,
age int,
category array<string>,
length int,
views int,
rate float,
ratings int,
comments int,
relatedId array<string>)
row format delimited
fields terminated by " "
collection items terminated by "&"
stored as textfile
location '/guli/video_etl';
create external table gulivideo_user_ori(
uploader string,
videos int,
friends int)
row format delimited
fields terminated by " "
stored as textfile
location '/guli/user';
create table gulivideo_orc(
videoId string,
uploader string,
age int,
category array<string>,
length int,
views int,
rate float,
ratings int,
comments int,
relatedId array<string>)
row format delimited fields terminated by " "
collection items terminated by "&"
stored as orc;
create table gulivideo_user_orc(
uploader string,
videos int,
friends int)
row format delimited
fields terminated by " "
stored as orc;
0: jdbc:hive2://hadoop101:10000> insert into table gulivideo_orc select * from gulivideo_ori;
0: jdbc:hive2://hadoop101:10000> insert into table gulivideo_user_orc select * from gulivideo_user_ori;
1.--统计视频观看数Top10
select videoid, uploader, views from gulivideo_orc
order by views desc limit 10;
+--------------+------------------+-----------+--+
| videoid | uploader | views |
+--------------+------------------+-----------+--+
| dMH0bHeiRNg | judsonlaipply | 42513417 |
| 0XxI-hvPRRA | smosh | 20282464 |
| 1dmVU08zVpA | NBC | 16087899 |
| RB-wUgnyGv0 | ChrisInScotland | 15712924 |
| QjA5faZF1A8 | guitar90 | 15256922 |
| -_CSo1gOd48 | tasha | 13199833 |
| 49IDp76kjPw | TexMachina | 11970018 |
| tYnn51C3X_w | CowSayingMoo | 11823701 |
| pv5zWaTEVkI | OkGo | 11672017 |
| D2kJZOfq7zk | mrWoot | 11184051 |
+--------------+------------------+-----------+--+
10 rows selected (22.612 seconds)
使用group by的两个要素:
(1) 出现在select后面的字段 要么是是聚合函数中的,要么就是group by 中的.
(2) 要筛选结果 可以先使用where 再用group by 或者先用group by 再用having
--2.统计视频类别热度Top10 (类别的videoid--视频的唯一id越多就代表热度高, 类别排序的多少排序;不能分组分组是在组内排序)
①统计视频类别:
select videoid, categories from gulivideo_orc lateral view explode(category) tbl as categories
②按类别的热度排名
select t1.videoid, t1.categories, count(videoid) num from (select videoid, categories from gulivideo_orc lateral view explode(category) tbl as categories) t1
group by t1.categories order by num desc limit 10;
--->拼一块:t1.videoid不能出现在select后边,
select t1.categories, count(videoid) num from (select videoid, categories from gulivideo_orc lateral view explode(category) tbl as categories) t1
group by t1.categories order by num desc limit 10;
+----------------+---------+--+
| t1.categories | num |
+----------------+---------+--+
| Music | 179049 |
| Entertainment | 127674 |
| Comedy | 87818 |
| Animation | 73293 |
| Film | 73293 |
| Sports | 67329 |
| Gadgets | 59817 |
| Games | 59817 |
| Blogs | 48890 |
| People | 48890 |
+----------------+---------+--+
10 rows selected (70.01 seconds)
3.--统计出视频观看数最高的20个视频的所属类别以及类别包含Top20视频的个数 //所有类别中包含Top20视频的个数
//Expression not in GROUP BY key 'videoid'
not in GROUP BY key 'views',后边有views,select后必须加views
############
①观看数最高的20个视频:
select videoid, category, views from gulivideo_orc order by views desc limit 20
②把类别category炸开--所属类别
select videoid, categories, views from t1 lateral view explode(category) tbl categories
--->前两句合起:
select t1.videoid, categories, t1.views from (select videoid, category, views from gulivideo_orc order by views desc limit 20
) t1 lateral view explode(category) tbl as categories;
+--------------+----------------+-----------+--+
| t1.videoid | categories | t1.views |
+--------------+----------------+-----------+--+
| dMH0bHeiRNg | Comedy | 42513417 |
| 0XxI-hvPRRA | Comedy | 20282464 |
| 1dmVU08zVpA | Entertainment | 16087899 |
| RB-wUgnyGv0 | Entertainment | 15712924 |
| QjA5faZF1A8 | Music | 15256922 |
| -_CSo1gOd48 | People | 13199833 |
| -_CSo1gOd48 | Blogs | 13199833 |
| 49IDp76kjPw | Comedy | 11970018 |
| tYnn51C3X_w | Music | 11823701 |
| pv5zWaTEVkI | Music | 11672017 |
| D2kJZOfq7zk | People | 11184051 |
| D2kJZOfq7zk | Blogs | 11184051 |
| vr3x_RRJdd4 | Entertainment | 10786529 |
| lsO6D1rwrKc | Entertainment | 10334975 |
| 5P6UU6m3cqk | Comedy | 10107491 |
| 8bbTtPL1jRs | Music | 9579911 |
| _BuRwH59oAo | Comedy | 9566609 |
| aRNzWyD7C9o | UNA | 8825788 |
| UMf40daefsI | Music | 7533070 |
| ixsZy2425eY | Entertainment | 7456875 |
| MNxwAU_xAMk | Comedy | 7066676 |
| RUCZJVJ_M8o | Entertainment | 6952767 |
+--------------+----------------+-----------+--+
③类别中包含top20的视频的个数:在上条基础上加上按类别分组,计数组内videoid计数
--->
select categories, count(videoid) from (select videoid, category, views from gulivideo_orc order by views desc limit 20
) t1 lateral view explode(category) tbl as categories group by categories
+----------------+------+--+
| categories | _c1 |
+----------------+------+--+
| Blogs | 2 |
| Comedy | 6 |
| Entertainment | 6 |
| Music | 5 |
| People | 2 |
| UNA | 1 |
+----------------+------
-- over里边不能使用limit, 怎么获取分区排序前几个呢?需要使用一个子查询;分区是数据存储上的分子文件,查询时还是在一张表
select t1.videoid, t1.views, t1.ran, t1.categories from(
select videoid, views, categories, rank() over(partition by categories order by views desc) ran
from gulivideo_orc lateral view explode(category) tbl as categories) t1
where t1.ran <= 5;
+--------------+-----------+---------+----------------+--+
| t1.videoid | t1.views | t1.ran | t1.categories |
+--------------+-----------+---------+----------------+--+
| 2GWPOPSXGYI | 3660009 | 1 | Animals |
| xmsV9R8FsDA | 3164582 | 2 | Animals |
| 12PsUW-8ge4 | 3133523 | 3 | Animals |
| OeNggIGSKH8 | 2457750 | 4 | Animals |
| WofFb_eOxxA | 2075728 | 5 | Animals |
| sdUUx5FdySs | 5840839 | 1 | Animation |
| 6B26asyGKDo | 5147533 | 2 | Animation |
| H20dhY01Xjk | 3772116 | 3 | Animation |
| 55YYaJIrmzo | 3356163 | 4 | Animation |
| JzqumbhfxRo | 3230774 | 5 | Animation |
| RjrEQaG5jPM | 2803140 | 1 | Autos
......
4.--统计视频观看数Top50所关联视频的所属类别排序
Top50---relatedid---种类---; 炸开之后直接join,因它是张虚拟表,hive是不支持的
select videoid, views, relatedid from gulivideo_orc order by views desc limit 50
炸开单独写一个sql: t1 select distinct(tbl.relatedids) rid from t1 lateral view explode(relatedid) tbl as relatedids
自己join自己下: t2 select g.videoid, g.category from t2 left join gulivideo_orc g on t2.vid=g.videoid
把category炸开并排序:select cateegories, count(videoid) hot from t3 lateral view explode(category) tb12 as catogories group by categores order by hot desc;
select categories, count(videoid) hot from(select g.videoid, g.category from(select distinct(tbl.relatedids) rid from(select videoid, views, relatedid from gulivideo_orc order by views desc limit 50) t1 lateral view explode(relatedid) tbl as relatedids) t2 join gulivideo_orc g on t2.rid=g.videoid) t3 lateral view explode(category) tbl2 as categories group by categories order by hot desc; +----------------+------+--+ | categories | hot | +----------------+------+--+ | Comedy | 217 | | Entertainment | 207 | | Music | 186 | | Blogs | 49 | | People | 49 | | Film | 46 | | Animation | 46 | | News | 21 | | Politics | 21 | | Games | 19 | | Gadgets | 19 | | Sports | 17 | | Places | 12 | | UNA | 12 | | Travel | 12 | | Howto | 12 | | DIY | 12 | | Animals | 11 | | Pets | 11 | | Autos | 3 | | Vehicles | 3 | +----------------+------+--+ 21 rows selected (115.239 seconds)
5.--统计每个类别中的视频热度Top10,以Music为例 创建类别表: create table gulivideo_category( videoid string, uploader string, age int, categoryid string, length int, views int, rate float, ratings int, comments int, relatedid array<string>) row format delimited fields terminated by " " collection items terminated by "&" stored as orc; 插入数据: insert into table gulivideo_category select videoid, uploader, age, categoryid, length, views, rate, ratings, comments, relatedid from gulivideo_orc lateral view explode(category) category as categoryid; --->把一张表全查出来:
select categoryid, videoid, paiming from (
select categoryid, videoid, rank() over(partition by categoryid order by views desc) paiming from gulivideo_category) t1
where t1.paiming <= 10;
select categoryid, videoid, views from gulivideo_category where categoryid="music" order by views desc limit 10; 6.--统计每个类别中视频流量Top10,以Music为例 select videoid, ratings from gulivideo_category where categoryid="music" order by ratings desc limit 10; 7.--统计上传视频最多的用户Top10以及他们上传的观看次数在前20的视频 ①上传视频最多的用户Top10: select videos,uploader from gulivideo_user_orc order by videos desc limit 10; ②找出这10个人上传的视频
select g.videoid, rank() over(partition by g.uploader order by g.views desc) hot from t1 join gulivideo_orc g on t1.uploader = g.uploader
③找出前20
select t2.uploader, t2.videoid from t2 where t2.hot <= 20; select t2.uploader, t2.videoid from( select g.uploader, g.videoid, g.views, rank() over(partition by g.uploader order by g.views desc) hot from (select uploader,videos from gulivideo_user_orc order by videos desc limit 10) t1 left join gulivideo_orc g on t1.uploader=g.uploader) t2 where t2.hot <= 20; +----------------+--------------+--+ | t2.uploader | t2.videoid | +----------------+--------------+--+ | NULL | NULL | | NULL | NULL | | NULL | NULL | | NULL | NULL | | Ruchaneewan | xbYyjUdhtJw | | Ruchaneewan | 4dkKeIUkN7E | | Ruchaneewan | qCfuQA6N4K0 | | Ruchaneewan | TmYbGQaRcNM | | Ruchaneewan | dOlfPsFSjw0 | | expertvillage | -IxHBW0YpZw | | expertvillage | BU-fT5XI_8I | | expertvillage | ADOcaBYbMl0 | ... 8.--统计每个类别视频观看数Top10 select t.categoryid, t.videoid, t.ranking from( select categoryid, videoid, rank() over(partition by categoryid order by views desc) ranking from gulivideo_category) t where t.ranking <= 10; +----------------+--------------+------------+--+ | t.categoryid | t.videoid | t.ranking | +----------------+--------------+------------+--+ | Animals | 2GWPOPSXGYI | 1 | | Animals | xmsV9R8FsDA | 2 | | Animals | 12PsUW-8ge4 | 3 | | Animals | OeNggIGSKH8 | 4 | | Animals | WofFb_eOxxA | 5 | | Animals | AgEmZ39EtFk | 6 | | Animals | a-gW3RbJd8U | 7 | | Animals | 8CL2hetqpfg | 8 | | Animals | QmroaYVD_so | 9 | | Animals | Sg9x5mUjbH8 | 10 | | Animation | sdUUx5FdySs | 1 | | Animation | 6B26asyGKDo | 2 | | Animation | H20dhY01Xjk | 3 | | Animation | 55YYaJIrmzo | 4 | | Animation | JzqumbhfxRo | 5 | | Animation | eAhfZUZiwSE | 6 | | Animation | h7svw0m-wO0 | 7 | | Animation | tAq3hWBlalU | 8 | | Animation | AJzU3NjDikY | 9 | | Animation | ElrldD02if0 | 10 | | Autos | RjrEQaG5jPM | 1 | ...... 210 rows selected (24.379 seconds)
1.分组TOPN选出今年每个学校,每个年级,每个科目分数前三.
: 时间,学校,年级,姓名,科目,成绩
建表
create external table score_test(school string, grade string, name string, subject string, score int) partitioned by (year string) row format delimited fields terminated by ',' stored as textfile location '/hive_data'; stored as textfile ##把它放后边报错
select t1.name, t1.subject, t1.ran from(select name, subject, row_number() over(partition by school, grade, subject order by score desc) ran from score_test where year="2013") t1 where t1.ran <= 3;
2. 今年 清华 1年级 总成绩大于200分的学生 以及学生数 ||多个字段的group by,还要按name分
select school, grade, name, sum(score) sum_score, count(1) over() num from score_test where year = "2013" and school="清华" and grade="1" group by school, grade, name having sum_score > 200;
3. CREATE TABLE transaction_details (cust_id INT, amount FLOAT, month STRING, country STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’ ; 建按月份的分区表: create table transaction_details(cust_id int, amount float, month string, country string) partitioned by(month string) row format delimited fields terminated by ','; 每个月的总收入: select cust_id, sum(amount) over(partition by month) as total from transaction_details; 4. 将内部表a,转换成外部表: alter tale a set tblproperties ('external'='true'); 5.订单详情表ord_det(order_id订单号,sku_id商品编号,sale_qtty销售数量,dt日期分区) 任务计算2016年1月1日商品销量的Top100,并按销量降级排序 select order_id, sale_qtty from ord_det where dt = "20160101" order by sale_qtty desc limit 100;
STG.ORDER,有如下字段:Date,Order_id,User_id,amount。请给出sql进行统计: 数据样例:2017-01-01,10029028,1000003251,33.57 1) 给出2017年每个月的订单数、用户数、总成交金额 一个分区中的数据肯定很大,不要用distinct,用group by user_id做一个子查询再count(user_id) select count(user_id) from (select user_id from stg.order group by user_id); select count(order_id) order_count, count(distinct(user_id)) user_count, sum(amount) all, substring(date, 1, 7) month from stg.order where substring(date, 1, 4)='2017' group by month; 2) 给出2017年11月的新客数(指在11月才有第一笔订单)。 select count(1) from (select order_id, lag(date, 1) over(partition by user_id order by date) fistOrder from stg.order) t1 where substring(date, 1, 7) = '2017-11' and fistOrder is null;
蚂蚁森林植物申领统计 =================================================================== 表1:user_low_carbon表记录了用户每天的蚂蚁森林低碳生活领取的记录流水 user_id(int) data_dt(string) low_carbon 用户 日期 减少碳排放(g) 数据样例: user_id | date_dt | low_carbon ———————————————————— u_001 | 2017/1/1 | 10 u_001 | 2017/1/2 | 150 u_001 | 2017/1/2 | 110 u_001 | 2017/1/2 | 10 u_001 | 2017/1/4 | 50 u_001 | 2017/1/4 | 10 u_001 | 2017/1/6 | 45 u_001 | 2017/1/6 | 90 u_002 | 2017/1/1 | 10 u_002 | 2017/1/2 | 150 u_002 | 2017/1/2 | 70 u_002 | 2017/1/3 | 30 u_002 | 2017/1/3 | 80 u_002 | 2017/1/4 | 150 u_002 | 2017/1/5 | 101 u_002 | 2017/1/6 | 68 ================================================================ 表2:plant_carbon表,用于记录申领环保植物所需要减少的碳排放量 plant_id(int) plant_name low_carbon 植物编号 植物名 换购植物所需要的碳 数据样例: plant_id | plant_name | plant_carbon ———————————————————— p001 | 梭梭树 | 17 p002 | 沙柳 | 19 p003 | 樟子树 | 146 p004 | 胡杨 | 215 ================================================================ 题目一 蚂蚁森林植物申领统计 问题:假设2017年1月1日开始记录低碳数据(user_low_carbon),假设2017年10月1日之前满足申领条件的用户都申领了一颗“p004-胡杨”, 剩余的能量全部用来领取“p002-沙柳”。 统计在10月1日累计申领“p002-沙柳” 排名前10的用户信息;以及他比后一名多领了几颗沙柳。 得到的统计结果如下表样式: user_id plant_count less_count(比后一名多领了几颗沙柳) u_101 1000 100 u_088 900 400 u_103 500 … 1.累计能量排名前10的用户信息,取日期在10月1日之前的|按用户id分组|总能量排序|取-过滤前11: t1 select user_id, sum(low_carbon) sum_carbon from user_low_carbon where datediff(regexp_replace("2017/10/1", "/", "-"), regexp_replace(date_dt, "/", "-")) > 0 group by user_id order by sum_carbon desc limit 11; 2.胡杨的能量 t2 select plant_carbon huyang from plant_carbon where plant_name = "胡杨"; 3.杨柳的能量 t3 select plant_carbon yangliu from plant_carbon where plant_name = "杨柳"; 4.能领取的杨柳个数num t4 select floor((sum_carbon-huyang)/yangliu) plant_count from t1, t2, t3; 5.他比后一名的人多领取的数,用lead往后第n行数据,把它们做比较的放在同1行; t5 select lead(sum_carbon, 1, 0) over(sort by sum_carbon desc) plant_count2 from t4; 6.做比较 select user_id,plant_count, (plant_count - plant_count2) less_count from t5 limit10; ================================================================= 题目二 蚂蚁森林低碳用户排名分析 问题:查询user_low_carbon表中每日流水记录,条件为: 用户在2017年,连续三天(或以上)的天数里, 每天减少碳排放(low_carbon)都超过100g的用户低碳流水。 需要查询返回满足以上条件的user_low_carbon表中的记录流水。 例如用户u_002符合条件的记录如下,因为2017/1/2~2017/1/5连续四天的碳排放量之和都大于等于100g: seq(key) user_id data_dt low_carbon xxxxx10 u_002 2017/1/2 150 xxxxx11 u_002 2017/1/2 70 xxxxx12 u_002 2017/1/3 30 xxxxx13 u_002 2017/1/3 80 xxxxx14 u_002 2017/1/4 150 xxxxx14 u_002 2017/1/5 101 1.过滤用户在2007年中,碳排放量超过100g能量的用户; 按在2007年的| 用户id、日期(因为不同行有可能是一个日期)进行分组| 选择每天的能量>100的; t1 select user_id, date_dt, sum(low_carbon) sum_day from user_low_carbon where substring(data_dt, 1, 4) year = "2017" group by user_id, data_dt order by user_id, data_dt having sum_day > 100 2.每条数据的日期以及前两条和后两条数据的日期 t2 select user_id, data_dt, lag(data_dt, 2, "2000/1/1") over(partition by user_id) lag_2, lag(data_dt, 1, "2000/1/1") over(partition by user_id) lag_1, lead(data_dt, 2, "2000/1/1") over(partition by user_id) lead_2, lead(data_dt, 1, "2000/1/1") over(partition by user_id) lead_1 from t1; 3.计算当前日期与前后两条数据的日期差 t3: select user_id, data_dt datediff(regexp_replace("data_dt", "/", "-"), regexp_replace("lag_2", "/", "-")) lag2, datediff(regexp_replace("data_dt", "/", "-"), regexp_replace("lag_1", "/", "-")) lag1, datediff(regexp_replace("data_dt", "/", "-"), regexp_replace("lead_2"), "/", "-") lead2, datediff(regexp_replace("data_dt", "/", "-"), regexp_replace("lead_1", "/", "-")) lead1 from t2; 4.连续3天有三种情况: ①当前日期和前一天日期差为1,当前日期和前两天的日期差为2; ②当前日期和前一天日期差为1,当前日期和后一天的日期差为-1; ③当前日期和后一天的日期差为-1,当前日期和后两天的日期差为-2; t4: select user_id, data_dt from t3 where (lag1=1 and lag2=2) or (lag1=1 and lead1=-1) or (lead1=-1 and lead2=-2); 5.最后的结果 select t5.user_id, t5.data_dt, t5.low_carbon from user_low_carbon t5 inner join t4 on t4.user_id = t5.user_id where t4.user_id = t5.user_id and t4.data_dt = t5.date_dt; ====================================================== 注: 涉及到的hive函数 ==================================== 1:regexp_replace(arg1,arg2,arg3) arg1:被替换字符串的正则表达式 arg2:被替换的字符 arg3:被换成的字符 e.g. :regexp_replace("2017/1/4","/","-")=2017-1-4 ===================================== 2:datediff(arg1,arg2) arg1:日期1 arg2:日期2 e.g.:datediff("2017-1-6","2017-1-5")=1