Substrings
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3269 Accepted Submission(s): 999
Problem Description
XXX has an array of length n. XXX wants to know that, for a given w, what is the sum of the distinct elements’ number in all substrings of length w. For example, the array is { 1 1 2 3 4 4 5 } When w = 3, there are five substrings of length 3. They are (1,1,2),(1,2,3),(2,3,4),(3,4,4),(4,4,5)
The distinct elements’ number of those five substrings are 2,3,3,2,2.
So the sum of the distinct elements’ number should be 2+3+3+2+2 = 12
The distinct elements’ number of those five substrings are 2,3,3,2,2.
So the sum of the distinct elements’ number should be 2+3+3+2+2 = 12
Input
There are several test cases.
Each test case starts with a positive integer n, the array length. The next line consists of n integers a1,a2…an, representing the elements of the array.
Then there is a line with an integer Q, the number of queries. At last Q lines follow, each contains one integer w, the substring length of query. The input data ends with n = 0 For all cases, 0<w<=n<=106, 0<=Q<=104, 0<= a1,a2…an <=106
Each test case starts with a positive integer n, the array length. The next line consists of n integers a1,a2…an, representing the elements of the array.
Then there is a line with an integer Q, the number of queries. At last Q lines follow, each contains one integer w, the substring length of query. The input data ends with n = 0 For all cases, 0<w<=n<=106, 0<=Q<=104, 0<= a1,a2…an <=106
Output
For each test case, your program should output exactly Q lines, the sum of the distinct number in all substrings of length w for each query.
Sample Input
7
1 1 2 3 4 4 5
3
1
2
3
0
Sample Output
7
10
12
Source
Recommend
#include<cstdio> #include<cstring> using namespace std; const int N=1e6+5; int n,num[N]; int cx[N],add[N],lnc[N]; long long f[N]; void Discretization(){ memset(cx,0,sizeof cx); memset(lnc,0,sizeof lnc); for(int i=1;i<=n;i++){ if(!cx[num[n-i+1]]){ cx[num[n-i+1]]=1; lnc[i]=lnc[i-1]+1; } else{ lnc[i]=lnc[i-1]; } } memset(cx,0,sizeof cx); memset(add,0,sizeof add); for(int i=1;i<=n;i++){ add[i-cx[num[i]]]++; cx[num[i]]=i; } } void DynamicProgramming(){ memset(f,0,sizeof f); f[1]=n;int delta=n; for(int i=2;i<=n;i++){ f[i]=f[i-1]-lnc[i-1]; delta-=add[i-1]; f[i]+=delta; } } void Solution(){ int Q,x; for(scanf("%d",&Q);Q--;) scanf("%d",&x),printf("%lld ",f[x]); } int main(){ while((~scanf("%d",&n))&&n){ for(int i=1;i<=n;i++) scanf("%d",&num[i]); Discretization(); DynamicProgramming(); Solution(); } return 0; }