(des)
存在一个长度为 (n) 的数字 (s), 一个素数 (P)
(m) 次询问一段区间 ([l, r]) 内的子串构成的数是 (P) 的倍数
(sol)
对于一次询问 ([l, r])
答案为
[sum_{i=l}^{r} sum_{j=i}^{r}[(sum_{k=i}^{j} s_{k} imes 10^{j-k}) pmod P equiv 0]
]
等价于
[sum_{i=l}^{r} sum_{j=i}^{r} [10^{j} (sum_{k=i}^{j} s_{k} imes 10^{-k}) pmod P equiv 0]
]
当 (P
e 2 且 P
e 5) 时,(p
mid 10^j)
所以原式等价于
[sum_{i=l}^{r} sum_{j=i}^{r} [(sum_{k=i}^{j} s_{k} imes 10^{-k}) pmod P equiv 0]
]
令
(a_k = s_k imes 10^{-k} pmod P)
(sum_k = sum_{i=1}^{k} a_i pmod P)
所以原式等价于
[egin{split}
& sum_{i=l}^{r} sum_{j=i}^{r} [(sum_{k=i}^{j} a_k) pmod P equiv 0] \
= &sum_{i=l}^{r} sum_{j=i}^{r} [(sum_j = sum_{i-1})]
end{split}
]
对 (sum) 离散化后转化为区间查询相等的数的个数
莫队
对于 (P = 2 或 P = 5) 的情况特判即可
时间复杂度 (O(n^{1.5} + nlogn))
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
#define Rep(i, a, b) for(int i = a; i <= b; i ++)
#define LL long long
#define gc getchar()
inline int read() {
int x = 0; char c = gc;
while(c < '0' || c > '9') c = gc;
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
return x;
}
int P, n, m;
char s[N];
int pos[N], block;
struct Node {
int l, r, id;
bool operator < (const Node a) const {
if(pos[this-> l] == pos[a.l]) return pos[this-> r] < pos[a.r];
return pos[this-> l] < pos[a.l];
}
} Ask[N];
LL S[N], A[N], Sum[N], Ten[N] = {0, 10};
LL Copysum[N];
LL Tong[N], Answer[N];
LL Ksm(LL a, LL b) {
LL ret = 1;
while(b) {
if(b & 1) ret = ret * a % P;
a = a * a % P;
b >>= 1;
}
return ret;
}
LL Now_ans;
inline void Cut(int x) {Tong[Sum[x]] --; Now_ans -= Tong[Sum[x]];}
inline void Add(int x) {Now_ans += Tong[Sum[x]]; Tong[Sum[x]] ++;}
void MoDui() {
int L = Ask[1].l, R = L - 1;
Rep(i, 1, m) {
int l = Ask[i].l - 1, r = Ask[i].r;
for(; L < l; L ++) Cut(L);
for(; R > r; R --) Cut(R);
for(; L > l; L --) Add(L - 1);
for(; R < r; R ++) Add(R + 1);
Answer[Ask[i].id] = Now_ans;
}
}
LL totsum[N], totcnt[N];
void Special_Judge() {
Rep(i, 1, n) {
totcnt[i] = totcnt[i - 1] + ((s[i] - '0') % P == 0 ? 1 : 0);
totsum[i] = totsum[i - 1] + ((s[i] - '0') % P == 0 ? i : 0);
}
Rep(i, 1, m) {
int l = Ask[i].l, r = Ask[i].r;
cout << totsum[r] - totsum[l - 1] - (l - 1) * (totcnt[r] - totcnt[l - 1]) << "
";
}
}
int main() {
P = read();
scanf("%s",s + 1);
n = strlen(s + 1);
m = read();
Rep(i, 1, m) Ask[i] = (Node) {read(), read(), i};
if(P == 2 || P == 5) {
Special_Judge(); return 0;
}
block = sqrt(n);
Rep(i, 1, n) pos[i] = (i - 1) / block + 1;
sort(Ask + 1, Ask + m + 1);
Rep(i, 1, n) S[i] = (s[i] - '0') % P;
Rep(i, 2, n) Ten[i] = (Ten[i - 1] * 10) % P;
Rep(i, 1, n) A[i] = S[i] * Ksm(Ten[i], P - 2) % P;
Rep(i, 1, n) Sum[i] = (Sum[i - 1] + A[i]) % P;
Rep(i, 1, n) Copysum[i] = Sum[i];
sort(Copysum + 1, Copysum + n + 1);
Rep(i, 1, n) Sum[i] = lower_bound(Copysum, Copysum + n + 1, Sum[i]) - Copysum;
MoDui();
Rep(i, 1, m) cout << Answer[i] << "
";
return 0;
}