• HDU


    HDU - 2586
    Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u

     Status

    Description

    There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.

    Input

    First line is a single integer T(T<=10), indicating the number of test cases. 
      For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n. 
      Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.

    Output

    For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.

    Sample Input

    2
    3 2
    1 2 10
    3 1 15
    1 2
    2 3
    
    2 2
    1 2 100
    1 2
    2 1

    Sample Output

    10
    25
    100
    100

    Source

    题意是给你一棵带权树,以及任意两点,让你算出两点的距离。那么可以通过求两点的最近公共祖先(LCA),然后两点到根节点的距离的和减去两倍最近公共祖先到根节点的距离就是两点的距离了。求LCA可以用tarjan,是利用dfs的性质加上并查集找祖先的功能实现的。具体实现看代码

    可以参考http://blog.csdn.net/l_bestcoder/article/details/52087126

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #define X first
    #define Y second
    using namespace std;
    typedef pair<int,int> pii;
    const int maxn=40010;
    struct node
    {
        int v,w,next;
    } E[maxn*2];
    pii P[300];
    int cnt,head[maxn],Lca[maxn],n,m,dis[maxn],f[maxn];
    bool vis[maxn];
    void init()
    {
        cnt=0;
        memset(vis,0,sizeof(vis));
        memset(head,-1,sizeof(head));
    }
    void addedge(int v,int u,int w)
    {
        E[cnt].v=v,E[cnt].w=w,E[cnt].next=head[u];
        head[u]=cnt++;
        E[cnt].v=u,E[cnt].w=w,E[cnt].next=head[v];
        head[v]=cnt++;
    }
    int find(int x)
    {
        return x==f[x]?x:f[x]=find(f[x]);
    }
    void tarjan(int root)
    {
        vis[root]=1;
        f[root]=root;//初始化
        for (int i=1; i<=m; i++)
        {
            if (P[i].X==root&&vis[P[i].Y])
                Lca[i]=find(P[i].Y);
            if (P[i].Y==root&&vis[P[i].X])
                Lca[i]=find(P[i].X);
        }
        for (int i=head[root]; i!=-1; i=E[i].next)
        {
            if (!vis[E[i].v])
            {
                dis[E[i].v]=dis[root]+E[i].w;
                tarjan(E[i].v);
                f[E[i].v]=root;
            }
        }
    }
    int main()
    {
        int T;
        scanf("%d",&T);
        while (T--)
        {
            init();
            int a,b,c;
            scanf("%d%d",&n,&m);
            for (int i=1;i<n;i++)
            {
                scanf("%d%d%d",&a,&b,&c);
                addedge(a,b,c);
            }
            for (int i=1;i<=m;i++)
            scanf("%d%d",&P[i].X,&P[i].Y);
            dis[1]=0;
            tarjan(1);
            for (int i=1;i<=m;i++)
            printf("%d
    ",dis[P[i].X]+dis[P[i].Y]-2*dis[Lca[i]]);
        }
        return 0;
    }
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  • 相关阅读:
    min_25筛入门
    [湖南集训]更为厉害/谈笑风生
    [ARC060D] 最良表現
    [CQOI2007]矩形
    [SCOI2009]粉刷匠
    PAT乙级1030
    PAT乙级1028
    PAT乙级1029
    PAT乙级1026
    PAT乙级1027
  • 原文地址:https://www.cnblogs.com/scaugsh/p/5728733.html
Copyright © 2020-2023  润新知