• 76. Minimum Window Substring


    76. Minimum Window Substring

    题目

     Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).
    
    For example,
    S = "ADOBECODEBANC"
    T = "ABC"
    
    Minimum window is "BANC".
    
    Note:
    If there is no such window in S that covers all characters in T, return the empty string "".
    
    If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S. 
    

    解析

    // 76. Minimum Window Substring
    class Solution_76 {
    public:
    
    	//1) begin开始指向0, end一直后移,直到begin - end区间包含T中所有字符。记录窗口长度d
    	//2) 然后begin开始后移移除元素,直到移除的字符是T中的字符则停止,此时T中有一个字符没被包含在窗口,
    	//3) 继续后移end,直到T中的所有字符被包含在窗口,重新记录最小的窗口d。
    	//4) 如此循环知道end到S中的最后一个字符。
    	//时间复杂度为O(n)
    	string minWindow_(string s, string t) {
    
    		string result;
    		if (s.empty()||s.size()<t.size())
    		{
    			return result;
    		}
    		unordered_map<char, int> mp; //存储t中的字符,便于与s匹配
    		int left = 0;
    		int cnt = 0;                 //窗口字符串进行计数
    		int minlen = s.size()+1;
    		for (int i = 0; i < t.size();i++)
    		{
    			mp[t[i]]++;
    		}
    
    		for (int right = 0; right < s.size(); right++)
    		{
    			if (mp.find(s[right])!=mp.end()) //t字符在left~right窗口
    			{
    				if (mp[s[right]]>0) //体会>0的作用:当s中有重复字符串时,第一次匹配
    				{
    					cnt++; //计数器+1
    				}
    				mp[s[right]]--; //有重复元素时候,可能减为负
    				while (cnt==t.size()) ////当窗口内有t的所有字符,就要开始移动左窗口
    				{
    					if (mp.find(s[left])!=mp.end())
    					{
    						if (minlen>right-left+1)
    						{
    							minlen = right - left + 1;
    							result = s.substr(left, right - left + 1);
    						}
    						mp[s[left]]++; //将其包含在mp内,继续查找
    						if (mp[s[left]]>0)
    						{
    							cnt--;
    						}
    					}
    					left++; //右移窗口左边
    				}
    			}
    		}
    
    		return result;
    	}
    
    	string minWindow(string S, string T) {
    		string S, T;
    		return minWindow_(S, T);
    	}
    };
    
    

    题目来源

  • 相关阅读:
    NYOJ-括号配对问题--------待解决,RE
    NYOJ-小猴子下落
    UVA401
    UVA11059
    生成1-N的排列
    C++ STL, next_permutation用法。
    C++ STL, set用法。 待更新zzzzz
    C++ STL, sort用法。
    C++中getline的用法
    TCP系列34—窗口管理&流控—8、缓存自动调整
  • 原文地址:https://www.cnblogs.com/ranjiewen/p/8683062.html
Copyright © 2020-2023  润新知