0 简介
Hive SQL的执行计划描述SQL实际执行的整体轮廓,通过执行计划能了解SQL程序在转换成相应计算引擎的执行逻辑,掌握了执行逻辑也就能更好地把握程序出现的瓶颈点,从而能够实现更有针对性的优化。此外还能帮助开发者识别看似等价的SQL其实是不等价的,看似不等价的SQL其实是等价的SQL。可以说执行计划是打开SQL优化大门的一把钥匙。
要想学SQL执行计划,就需要学习查看执行计划的命令:explain
,在查询语句的SQL前面加上关键字explain是查看执行计划的基本方法。
学会explain,能够给我们工作中使用hive带来极大的便利!
查看SQL的执行计划
Hive提供的执行计划目前可以查看的信息有以下几种:
-
explain:查看执行计划的基本信息;
-
explain dependency:dependency在explain语句中使用会产生有关计划中输入的额外信息。它显示了输入的各种属性;
-
explain authorization:查看SQL操作相关权限的信息;
-
explain vectorization:查看SQL的向量化描述信息,显示为什么未对Map和Reduce进行矢量化。从 Hive 2.3.0 开始支持;
-
explain analyze:用实际的行数注释计划。从 Hive 2.2.0 开始支持;
-
explain cbo:输出由Calcite优化器生成的计划。CBO 从 Hive 4.0.0 版本开始支持;
-
explain locks:这对于了解系统将获得哪些锁以运行指定的查询很有用。LOCKS 从 Hive 3.2.0 开始支持;
-
explain ast:输出查询的抽象语法树。AST 在 Hive 2.1.0 版本删除了,存在bug,转储AST可能会导致OOM错误,将在4.0.0版本修复;
-
explain extended:加上 extended 可以输出有关计划的额外信息。这通常是物理信息,例如文件名,这些额外信息对我们用处不大;
1. explain
1.1 explain 的用法
Hive提供了explain命令来展示一个查询的执行计划,这个执行计划对于我们了解底层原理,Hive 调优,排查数据倾斜等很有帮助。
使用语法如下:
explain query;
在 hive cli 中输入以下命令(hive 2.3.7):
explain select sum(id) from test1;
得到结果:
STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 depends on stages: Stage-1 STAGE PLANS: Stage: Stage-1 Map Reduce Map Operator Tree: TableScan alias: test1 Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int) outputColumnNames: id Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Group By Operator aggregations: sum(id) mode: hash outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator sort order: Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE value expressions: _col0 (type: bigint) Reduce Operator Tree: Group By Operator aggregations: sum(VALUE._col0) mode: mergepartial outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink
看完以上内容有什么感受,是不是感觉都看不懂,不要着急,下面将会详细讲解每个参数,相信你学完下面的内容之后再看 explain 的查询结果将游刃有余。
一个HIVE查询被转换为一个由一个或多个stage组成的序列(有向无环图DAG)。这些stage可以是MapReduce stage,也可以是负责元数据存储的stage,也可以是负责文件系统的操作(比如移动和重命名)的stage。
我们将上述结果拆分看,先从最外层开始,包含两个大的部分:
- stage dependencies:各个stage之间的依赖性
- stage plan:各个stage的执行计划
先看第一部分 stage dependencies ,包含两个 stage,Stage-1 是根stage,说明这是开始的stage,Stage-0 依赖 Stage-1,Stage-1执行完成后执行Stage-0。
再看第二部分 stage plan,里面有一个 Map Reduce,一个MR的执行计划分为两个部分:
- Map Operator Tree:MAP端的执行计划树
- Reduce Operator Tree:Reduce端的执行计划树
这两个执行计划树里面包含这条sql语句的 operator:
- TableScan:表扫描操作,map端第一个操作肯定是加载表,所以就是表扫描操作,常见的属性:
- alias:表名称
- Statistics:表统计信息,包含表中数据条数,数据大小等
- Select Operator:选取操作,常见的属性 :
- expressions:需要的字段名称及字段类型
- outputColumnNames:输出的列名称
- Statistics:表统计信息,包含表中数据条数,数据大小等
- Group By Operator:分组聚合操作,常见的属性:
- aggregations:显示聚合函数信息
- mode:聚合模式,值有 hash:随机聚合,就是hash partition;partial:局部聚合;final:最终聚合
- keys:分组的字段,如果没有分组,则没有此字段
- outputColumnNames:聚合之后输出列名
- Statistics:表统计信息,包含分组聚合之后的数据条数,数据大小等
- Reduce Output Operator:输出到reduce操作,常见属性:
- sort order:值为空 不排序;值为 + 正序排序,值为 - 倒序排序;值为 +- 排序的列为两列,第一列为正序,第二列为倒序
- Filter Operator:过滤操作,常见的属性:
- predicate:过滤条件,如sql语句中的where id>=1,则此处显示(id >= 1)
- Map Join Operator:join 操作,常见的属性:
- condition map:join方式 ,如Inner Join 0 to 1 Left Outer Join0 to 2
- keys: join 的条件字段
- outputColumnNames:join 完成之后输出的字段
- Statistics:join 完成之后生成的数据条数,大小等
- File Output Operator:文件输出操作,常见的属性
- compressed:是否压缩
- table:表的信息,包含输入输出文件格式化方式,序列化方式等
- Fetch Operator 客户端获取数据操作,常见的属性:
- limit,值为 -1 表示不限制条数,其他值为限制的条数
1.2 explain 的使用场景
本节介绍 explain 能够为我们在生产实践中带来哪些便利及解决我们哪些迷惑
https://www.cnblogs.com/qiu-hua/p/14472190.html
2. explain dependency的用法
explain dependency用于描述一段SQL需要的数据来源,输出是一个json格式的数据,里面包含以下两个部分的内容:
-
input_partitions:描述一段SQL依赖的数据来源表分区,里面存储的是分区名的列表,如果整段SQL包含的所有表都是非分区表,则显示为空。
-
input_tables:描述一段SQL依赖的数据来源表,里面存储的是Hive表名的列表。
使用explain dependency查看SQL查询非分区普通表,在 hive cli 中输入以下命令:
explain dependency select s_age,count(1) num from student_orc;
得到结果:
{"input_partitions":[],"input_tables":[{"tablename":"default@student_tb _orc","tabletype":"MANAGED_TABLE"}]}
使用explain dependency查看SQL查询分区表,在 hive cli 中输入以下命令:
explain dependency select s_age,count(1) num from student_orc_partition;
得到结果:
{"input_partitions":[{"partitionName":"default@student_orc_partition@ part=0"}, {"partitionName":"default@student_orc_partition@part=1"}, {"partitionName":"default@student_orc_partition@part=2"}, {"partitionName":"default@student_orc_partition@part=3"}, {"partitionName":"default@student_orc_partition@part=4"}, {"partitionName":"default@student_orc_partition@part=5"}, {"partitionName":"default@student_orc_partition@part=6"}, {"partitionName":"default@student_orc_partition@part=7"}, {"partitionName":"default@student_orc_partition@part=8"}, {"partitionName":"default@student_orc_partition@part=9"}], "input_tables":[{"tablename":"default@student_orc_partition", "tabletype":"MANAGED_TABLE"}]
explain dependency的使用场景有两个:
-
场景一:快速排除。快速排除因为读取不到相应分区的数据而导致任务数据输出异常。例如,在一个以天分区的任务中,上游任务因为生产过程不可控因素出现异常或者空跑,导致下游任务引发异常。通过这种方式,可以快速查看SQL读取的分区是否出现异常。
-
场景二:理清表的输入,帮助理解程序的运行,特别是有助于理解有多重子查询,多表连接的依赖输入。
下面通过两个案例来看explain dependency的实际运用:
案例一:识别看似等价的代码
对于刚接触SQL的程序员,很容易将
select * from a inner join b on a.no=b.no and a.f>1 and a.f<3;
等价于
select * from a inner join b on a.no=b.no where a.f>1 and a.f<3;
我们可以通过案例来查看下它们的区别:
代码1:
select a.s_no from student_orc_partition a inner join student_orc_partition_only b on a.s_no=b.s_no and a.part=b.part and a.part>=1 and a.part<=2;
代码2:
select a.s_no from student_orc_partition a inner join student_orc_partition_only b on a.s_no=b.s_no and a.part=b.part where a.part>=1 and a.part<=2;
我们看下上述两段代码explain dependency的输出结果:
代码1的explain dependency结果
{"input_partitions": [{"partitionName":"default@student_orc_partition@part=0"}, {"partitionName":"default@student_orc_partition@part=1"}, {"partitionName":"default@student_orc_partition@part=2"}, {"partitionName":"default@student_orc_partition_only@part=1"}, {"partitionName":"default@student_orc_partition_only@part=2"}], "input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}
代码2的explain dependency结果:
{"input_partitions": [{"partitionName":"default@student_orc_partition@part=1"}, {"partitionName" : "default@student_orc_partition@part=2"}, {"partitionName" :"default@student_orc_partition_only@part=1"}, {"partitionName":"default@student_orc_partition_only@part=2"}], "input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}
通过上面的输出结果可以看到,其实上述的两个SQL并不等价,代码1在内连接(inner join)中的连接条件(on)中加入非等值的过滤条件后,并没有将内连接的左右两个表按照过滤条件进行过滤,内连接在执行时会多读取part=0的分区数据。而在代码2中,会过滤掉不符合条件的分区。
案例二:识别SQL读取数据范围的差别
代码1:
explain dependency select a.s_no from student_orc_partition a left join student_orc_partition_only b on a.s_no=b.s_no and a.part=b.part and b.part>=1 and b.part<=2;
代码2:
explain dependency select a.s_no from student_orc_partition a left join student_orc_partition_only b on a.s_no=b.s_no and a.part=b.part and a.part>=1 and a.part<=2;
以上两个代码的数据读取范围是一样的吗?答案是不一样,我们通过explain dependency来看下:
代码1的explain dependency结果:
{"input_partitions": [{"partitionName": "default@student_orc_partition@part=0"}, {"partitionName":"default@student_orc_partition@part=1"}, …中间省略7个分区 {"partitionName":"default@student_orc_partition@part=9"}, {"partitionName":"default@student_orc_partition_only@part=1"}, {"partitionName":"default@student_orc_partition_only@part=2"}], "input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}
代码2的explain dependency结果:
{"input_partitions": [{"partitionName":"default@student_orc_partition@part=0"}, {"partitionName":"default@student_orc_partition@part=1"}, …中间省略7个分区 {"partitionName":"default@student_orc_partition@part=9"}, {"partitionName":"default@student_orc_partition_only@part=0"}, {"partitionName":"default@student_orc_partition_only@part=1"}, …中间省略7个分区 {"partitionName":"default@student_orc_partition_only@part=9"}], "input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}
可以看到,对左外连接在连接条件中加入非等值过滤的条件,如果过滤条件是作用于右表(b表)有起到过滤的效果,则右表只要扫描两个分区即可,但是左表(a表)会进行全表扫描。如果过滤条件是针对左表,则完全没有起到过滤的作用,那么两个表将进行全表扫描。这时的情况就如同全外连接一样都需要对两个数据进行全表扫描。
在使用过程中,容易认为代码片段2可以像代码片段1一样进行数据过滤,通过查看explain dependency的输出结果,可以知道不是如此。
3. explain authorization 的用法
通过explain authorization可以知道当前SQL访问的数据来源(INPUTS) 和数据输出(OUTPUTS),以及当前Hive的访问用户 (CURRENT_USER)和操作(OPERATION)。
在 hive cli 中输入以下命令:
explain authorization select variance(s_score) from student_tb_orc;
结果如下:
INPUTS: default@student_tb_orc OUTPUTS: hdfs://node01:8020/tmp/hive/hdfs/cbf182a5-8258-4157-9194- 90f1475a3ed5/-mr-10000 CURRENT_USER: hdfs OPERATION: QUERY AUTHORIZATION_FAILURES: No privilege 'Select' found for inputs { database:default, table:student_ tb_orc, columnName:s_score}
从上面的信息可知:
上面案例的数据来源是defalut数据库中的 student_tb_orc表;
数据的输出路径是hdfs://node01:8020/tmp/hive/hdfs/cbf182a5-8258-4157-9194-90f1475a3ed5/-mr-10000;
当前的操作用户是hdfs,操作是查询;
观察上面的信息我们还会看到AUTHORIZATION_FAILURES信息,提示对当前的输入没有查询权限,但如果运行上面的SQL的话也能够正常运行。为什么会出现这种情况?Hive在默认不配置权限管理的情况下不进行权限验证,所有的用户在Hive里面都是超级管理员,即使不对特定的用户进行赋权,也能够正常查询。
最后
通过上面对explain的介绍,可以发现explain中有很多值得我们去研究的内容,读懂 explain 的执行计划有利于我们优化Hive SQL,同时也能提升我们对SQL的掌控力。