• 机器学习sklearn(三十二):算法实例(一)决策树(一)简介


    1 概述
    1.1 决策树是如何工作的
      决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树算法容易理解,适用各种数据,在解决各种问题时都有良好表现,尤其是以树模型为核心的各种集成算法,在各个行业和领域都有广泛的应用。
      我们来简单了解一下决策树是如何工作的。决策树算法的本质是一种图结构,我们只需要问一系列问题就可以对数据进行分类了。比如说,来看看下面这组数据集,这是一系列已知物种以及所属类别的数据:
    我们现在的目标是,将动物们分为哺乳类和非哺乳类。那根据已经收集到的数据,决策树算法为我们算出了下面的
    这棵决策树:
      假如我们现在发现了一种新物种Python,它是冷血动物,体表带鳞片,并且不是胎生,我们就可以通过这棵决策树来判断它的所属类别。
      可以看出,在这个决策过程中,我们一直在对记录的特征进行提问。最初的问题所在的地方叫做根节点,在得到结论前的每一个问题都是中间节点,而得到的每一个结论(动物的类别)都叫做叶子节点。

    决策树算法的核心是要解决两个问题:
    1)如何从数据表中找出最佳节点和最佳分枝?
    2)如何让决策树停止生长,防止过拟合?
      几乎所有决策树有关的模型调整方法,都围绕这两个问题展开。这两个问题背后的原理十分复杂,我们会在讲解模型参数和属性的时候为大家简单解释涉及到的部分。在这门课中,我会尽量避免让大家太过深入到决策树复杂的原理和数学公式中(尽管决策树的原理相比其他高级的算法来说是非常简单了),这门课会专注于实践和应用。如果大家希望理解更深入的细节,建议大家在听这门课之前还是先去阅读和学习一下决策树的原理。
     
    1.2 sklearn中的决策树
      模块sklearn.tree
    sklearn中决策树的类都在”tree“这个模块之下。这个模块总共包含五个类:
    sklearn的基本建模流程
    在那之前,我们先来了解一下sklearn建模的基本流程。

    在这个流程下,分类树对应的代码是:
    from sklearn import tree #导入需要的模块
    clf = tree.DecisionTreeClassifier()     #实例化
    clf = clf.fit(X_train,y_train) #用训练集数据训练模型
    result = clf.score(X_test,y_test) #导入测试集,从接口中调用需要的信息
  • 相关阅读:
    c++字符串排序
    JAVA实现四则运算的简单计算器
    JAVA图形小动画之简单行星运动
    JAVA多线程编程
    ege图形库之简单贪吃蛇(c++)
    ege图形库之动画排序
    mysql 性能优化方案
    MYSQL 优化常用方法
    [手把手教你] 用Swoft 搭建微服务(TCP RPC)
    php有效防止同一用户多次登录
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/14920488.html
Copyright © 2020-2023  润新知