对于简单的结构化数据,我们在HDFS和HBASE上的传递可能只需要用框架即可完成,但是对于复杂的数据传输,特别是实际工作中,数据的收集整理并非简单的结构,因此,我们需要对数据重新整理,并进行发送。这个过程就是依赖MapReduce,通过底层对数据的拆分和重组,达到我们要传输的结构要求。
下面我们开始进行一个简单的小测试:
从HDFS 到HBASE
首先,我们在虚拟机本地创建一个临时文件demo,简单的结构化数据为name,age,sex。值可以适当添加几行即可。然后通过命令
hdfs dfs -put demo
此时已经将文件存放到了HDFS上,然后在HBASE中,创建我们需要存储数据的表,创建命令:
create 'tb_test','info'
hbase 中表建立为表名tb_test,列族名info。
接下来我们编写对应的代码:
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import java.io.IOException; public class HdfstoHbase { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf=HBaseConfiguration.create(); Job job=Job.getInstance(conf, "hdfs-to-hbase"); job.setJarByClass(HdfstoHbase.class); job.setMapperClass(HdfsMap.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(NullWritable.class); TableMapReduceUtil.initTableReducerJob("tb_test",HbaseReduce.class,job ); FileInputFormat.addInputPath(job,new Path("/user/bda/demo")); System.out.println(job.waitForCompletion(true)?0:1); } public static class HdfsMap extends Mapper<Object,Text,Text,NullWritable>{ @Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { context.write(value,NullWritable.get() ); } } public static class HbaseReduce extends TableReducer<Text,NullWritable,ImmutableBytesWritable>{ private final byte[] cf="info".getBytes(); private final byte[] name="name".getBytes(); private final byte[] age="age".getBytes(); private final byte[] sex="sex".getBytes(); @Override protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { String[] ss=key.toString().split(","); Put put=new Put(key.toString().getBytes()); put.addColumn(cf,name ,ss[0].getBytes() ); put.addColumn(cf,age ,ss[1].getBytes() ); put.addColumn(cf,sex ,ss[2].getBytes() ); context.write(null,put); } } }
典型的MapReduce结构框架。然后打包,如果你打的是瘦包,那么,执行jar文件的过程你需要添加相应的依赖,或者是脚本提前写好执行,下面直接贴出脚本执行命令:
HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase classpath`:`${HBASE_HOME}/bin/hbase mapredcp` hadoop jar 打包的jar文件 文件的类名
执行后,在HBASE中,tb_test表即可查看到传入的数据。
HBASE到HDFS
同样的操作,这里只粘贴代码部分,其余操作类似。
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.mapreduce.TableMapper; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class HbasetoHdfs { public static void main(String[] args) throws Exception { Configuration cfg = HBaseConfiguration.create(); Job job = Job.getInstance(cfg,"hbase-to-hdfs"); job.setJarByClass(HbasetoHdfs.class); Scan scan = new Scan(); scan.setCaching(50); // 1 is the default in Scan, which will be bad for MapReduce jobs scan.setCacheBlocks(false); TableMapReduceUtil.initTableMapperJob("tb_test",scan,HbaseMap.class,Text.class,NullWritable.class,job); job.setReducerClass(HdfsReduce.class); FileOutputFormat.setOutputPath(job,new Path("/user/bda/dsj3")); System.out.println(job.waitForCompletion(true)?0:1); } public static class HbaseMap extends TableMapper<Text,NullWritable> { private final byte[] cf="info".getBytes(); private final byte[] name="name".getBytes(); private final byte[] age="age".getBytes(); private final byte[] sex="sex".getBytes(); @Override protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException { String line=""; String n = Bytes.toString(value.getValue(cf,name)); String a = Bytes.toString(value.getValue(cf,age)); String s = Bytes.toString(value.getValue(cf,sex)); line = n+","+a+","+s; context.write(new Text(line),NullWritable.get()); } } public static class HdfsReduce extends Reducer<Text,NullWritable,Text,NullWritable> { @Override protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { context.write(key,NullWritable.get()); } } }