包括内容如下图:
使用直接估计法,置信区间置信率的估计:
1.使用二项分布直接估计
$p(0.04<hat{p}<0.06) = sum_{0.04nleq k leq 0.06n}{n choose k}0.05^{k}0.95^{n-k}$
low=ceil(n*0.04);%上取整 high=floor(n*0.06);%下取整 prob = 0; for i=low:1:high prob = prob+nchoosek(n,i)*(0.05^i)*(0.95^(n-i)); end
2.使用正态分布近似
$mu = p = 0.05,sigma^2 = frac{p(1-p)}{n} = frac{0.05*0.95}{n}$
normcdf(0.06,0.05,sigma/x(i)^0.5) - normcdf(0.04,0.05,sigma/x(i)^0.5)
warning off all; clear all;clc;close all; x=500:1:1500; y = zeros(1,size(x,2)); y2 = zeros(1,size(x,2)); sigma = sqrt(0.05*0.95); for i =1:size(x,2) y(i) = adPredict(x(i)); y2(i) = normcdf(0.06,0.05,sigma/x(i)^0.5) - normcdf(0.04,0.05,sigma/x(i)^0.5); end plot(x,y,'b-'); hold on; plot(x,y2,'r-'); hold on; x1=[500 1500]; y1=[0.85 0.85]; plot(x1,y1,'y-');
打印曲线:观测到,n=1000,差不多置信度会到达0.85
AUC概念及计算:
sklearn代码:sklearn中有现成方法,计算一组TPR,FPR,然后plot就可以;AUC也可以直接调用方法。
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.preprocessing import StandardScaler from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve digits = datasets.load_digits() X, y = digits.data, digits.target X = StandardScaler().fit_transform(X) # classify small against large digits y = (y > 4).astype(np.int) X_train = X[:-400] y_train = y[:-400] X_test = X[-400:] y_test = y[-400:] lrg = LogisticRegression(penalty='l1') lrg.fit(X_train, y_train) y_test_prob=lrg.predict_proba(X_test) P = np.where(y_test==1)[0].shape[0]; N = np.where(y_test==0)[0].shape[0]; dt = 10001 TPR = np.zeros((dt,1)) FPR = np.zeros((dt,1)) for i in range(dt): y_test_p = y_test_prob[:,1]>=i*(1.0/(dt-1)) TP = np.where((y_test==1)&(y_test_p==True))[0].shape[0]; FN = P-TP; FP = np.where((y_test==0)&(y_test_p==True))[0].shape[0]; TN = N - FP; TPR[i]=TP*1.0/P FPR[i]=FP*1.0/N plt.plot(FPR,TPR,color='black') plt.plot(np.array([[0],[1]]),np.array([[0],[1]]),color='red') plt.show() #use sklearn method # fpr, tpr, thresholds = roc_curve(y_test,y_test_prob[:,1],pos_label=1) # plt.plot(fpr,tpr,color='black') # plt.plot(np.array([[0],[1]]),np.array([[0],[1]]),color='red') # plt.show() rank = y_test_prob[:,1].argsort() rank = rank.argsort()+1 auc = (sum(rank[np.where(y_test==1)[0]])-(P*1.0*(P+1)/2))/(P*N); print auc print roc_auc_score(y_test, y_test_prob[:,1])