• NLP(十) 主题识别


    原文链接:http://www.one2know.cn/nlp10/

    • 主题识别
      是发现输入文本集合中存在的主题的过程
      LDA算法,即狄利克雷分布算法
    from nltk.tokenize import RegexpTokenizer
    from nltk.corpus import stopwords
    from gensim import corpora,models
    import feedparser
    
    class IdentifyingTopicExample:
        def getDocuments(self): # 获取文档 放到documents中
            url = 'https://sports.yahoo.com/mlb/rss.xml'
            feed = feedparser.parse(url)
            self.documents = []
            for entry in feed['entries'][:5]:
                text = entry['summary']
                if 'ex' in text:
                    continue
                self.documents.append(text)
                print('-- {}'.format(text))
            print('INFO: Fetching documents from {} completed'.format(url))
    
        def cleanDocuments(self):
            tokenizer = RegexpTokenizer(r'[a-zA-Z]+') # 想要只处理字母9
            en_stop = set(stopwords.words('english')) # 英文停用词放到en_stop中
            self.cleaned = [] # 用于存储所有被清洗且分词后的文档
            for doc in self.documents:
                lowercase_doc = doc.lower() # 字母都变小写
                words = tokenizer.tokenize(lowercase_doc) # 分词
                non_stopped_words = [i for i in words if not i in en_stop] # 过滤掉停用词
                self.cleaned.append(non_stopped_words) # cleaned 二维列表
            print('INFO: Clearning {} documents completed'.format(len(self.documents)))
    
        def doLDA(self):
            dictionary = corpora.Dictionary(self.cleaned) # 创建字典
            corpus = [dictionary.doc2bow(cleandoc) for cleandoc in self.cleaned]
            # 由每个清洗后的句子,以词袋形式定义corpus变量
            ldamodel = models.ldamodel.LdaModel(corpus,num_topics=2,id2word=dictionary)
            # 在corpus上创建一个模型,主题数量设为2,id2word设置词典的大小/映射情况
            print(ldamodel.print_topics(num_topics=2,num_words=4)) # 打印主题 每个主题含4个单词
    
        def run(self):
            self.getDocuments()
            self.cleanDocuments()
            self.doLDA()
    
    if __name__ == "__main__":
        topicExample = IdentifyingTopicExample()
        topicExample.run()
    

    输出:

    -- MLB Network documentary shines spotlight on 1995 Mariners team that saved baseball in Seattle.
    -- Marcus Semien's second big swing of the day finally gave the Oakland Athletics some breathing room in an oh-so-tight series with the AL Central-leading Twins.  Semien hit a grand slam in the eighth inning after his tying homer leading off the fifth, Chris Herrmann had a career-high four hits, and
    -- It wasn't long until Cleveland took advantage of it.  Francisco Lindor drove in the go-ahead runs during a six-run seventh inning, Jose Ramirez homered twice and Carlos Santana pushed his on-base streak to 27 games as the Indians rallied to beat bumbling Kansas City 8-4 on Thursday and complete a
    -- A look at what's happening around the majors Friday:
    INFO: Fetching documents from https://sports.yahoo.com/mlb/rss.xml completed
    INFO: Clearning 4 documents completed
    [(0, '0.022*"look" + 0.022*"friday" + 0.022*"around" + 0.022*"majors"'), (1, '0.023*"leading" + 0.023*"semien" + 0.022*"inning" + 0.014*"homer"')]
    
  • 相关阅读:
    ArcGIS10.3.1于2015年6月发布
    jS数组
    正则表达式
    JS中prototype属性-JS原型模式
    URI, URL, and URN
    JS中的Call和apply
    北京获得2022冬奥会举办权
    JQuery.on()事件绑定
    JavaScript模块化-require.js
    SpringBoot中DataSourceAutoConfiguration注解
  • 原文地址:https://www.cnblogs.com/peng8098/p/nlp_10.html
Copyright © 2020-2023  润新知