• 第2章 预备知识


    深度学习简介

    预备知识

    环境配置

    本节简单介绍一些必要的软件的安装与配置,由于不同机器软硬件配置不同,所以不详述,遇到问题请善用Google。

    Anaconda

    Anaconda是Python的一个开源发行版本,主要面向科学计算。我们可以简单理解为,Anaconda是一个预装了很多我们用的到或用不到的第三方库的Python。而且相比于大家熟悉的pip install命令,Anaconda中增加了conda install命令。当你熟悉了Anaconda以后会发现,conda install会比pip install更方便一些。
    强烈建议先去看看最省心的Python版本和第三方库管理——初探Anaconda初学 Python 者自学 Anaconda 的正确姿势-猴子的回答

    总的来说,我们应该完成以下几步:

    • 根据操作系统下载并安装Anaconda(或者mini版本Miniconda)并学会常用的几个conda命令,例如如何管理python环境、如何安装卸载包等;
    • Anaconda安装成功之后,我们需要修改其包管理镜像为国内源,这样以后安装包时就会快一些。

    Jupyter

    在没有notebook之前,在IT领域是这样工作的:在普通的 Python shell 或者在IDE(集成开发环境)如Pycharm中写代码,然后在word中写文档来说明你的项目。这个过程很繁琐,通常是写完代码,再写文档的时候我还的重头回顾一遍代码。最蛋疼的地方在于,有些数据分析的中间结果,还得重新跑代码,然后把结果弄到文档里给客户看。有了notebook之后,世界突然美好了许多,因为notebook可以直接在代码旁写出叙述性文档,而不是另外编写单独的文档。也就是它可以能将代码、文档等这一切集中到一处,让用户一目了然。如下图所示。

    Jupyter Notebook 已迅速成为数据分析,机器学习的必备工具。因为它可以让数据分析师集中精力向用户解释整个分析过程。

    我们参考jupyter notebook-猴子的回答进行jupyter notebook及常用包(例如环境自动关联包nb_conda)的安装。

    安装好后,我们使用以下命令打开一个jupyter notebook:

    jupyter notebook 
    

    这时在浏览器打开 http://localhost:8888 (通常会自动打开)位于当前目录的jupyter服务。

    PyTorch

    由于本文需要用到PyTorch框架,所以还需要安装PyTorch(后期必不可少地会使用GPU,所以安装GPU版本的)。直接去PyTorch官网找到自己的软硬件对应的安装命令即可(这里不得不吹一下PyTorch的官方文档,从安装到入门,深入浅出,比tensorflow不知道高到哪里去了)。安装好后使用以下命令可查看安装的PyTorch及版本号。

    conda list | grep torch
    

    其他

    此外还可以安装python最好用的IDE PyCharm,专业版的应该是需要收费的,但学生用户可以申请免费使用(传送门),或者直接用免费的社区版。

    如果不喜欢用IDE也可以选择编辑器,例如VSCode等。

    本节与原文有很大不同,原文传送门

    数据操作

    在深度学习中,我们通常会频繁地对数据进行操作。作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作。

    在PyTorch中,torch.Tensor是存储和变换数据的主要工具。如果你之前用过NumPy,你会发现Tensor和NumPy的多维数组非常类似。然而,Tensor提供GPU计算和自动求梯度等更多功能,这些使Tensor更加适合深度学习。

    "tensor"这个单词一般可译作“张量”,张量可以看作是一个多维数组。标量可以看作是0维张量,向量可以看作1维张量,矩阵可以看作是二维张量。

    创建Tensor

    我们先介绍Tensor的最基本功能,即Tensor的创建。

    首先导入PyTorch:

    import torch
    

    然后我们创建一个5x3的未初始化的Tensor

    x = torch.empty(5, 3)
    print(x)
    

    输出:

    tensor([[ 0.0000e+00,  1.5846e+29,  0.0000e+00],
            [ 1.5846e+29,  5.6052e-45,  0.0000e+00],
            [ 0.0000e+00,  0.0000e+00,  0.0000e+00],
            [ 0.0000e+00,  0.0000e+00,  0.0000e+00],
            [ 0.0000e+00,  1.5846e+29, -2.4336e+02]])
    

    创建一个5x3的随机初始化的Tensor:

    x = torch.rand(5, 3)
    print(x)
    

    输出:

    tensor([[0.4963, 0.7682, 0.0885],
            [0.1320, 0.3074, 0.6341],
            [0.4901, 0.8964, 0.4556],
            [0.6323, 0.3489, 0.4017],
            [0.0223, 0.1689, 0.2939]])
    

    创建一个5x3的long型全0的Tensor:

    x = torch.zeros(5, 3, dtype=torch.long)
    print(x)
    

    输出:

    tensor([[0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0]])
    

    还可以直接根据数据创建:

    x = torch.tensor([5.5, 3])
    print(x)
    

    输出:

    tensor([5.5000, 3.0000])
    

    还可以通过现有的Tensor来创建,此方法会默认重用输入Tensor的一些属性,例如数据类型,除非自定义数据类型。

    x = x.new_ones(5, 3, dtype=torch.float64)  # 返回的tensor默认具有相同的torch.dtype和torch.device
    print(x)
    
    x = torch.randn_like(x, dtype=torch.float) # 指定新的数据类型
    print(x) 
    

    输出:

    tensor([[1., 1., 1.],
            [1., 1., 1.],
            [1., 1., 1.],
            [1., 1., 1.],
            [1., 1., 1.]], dtype=torch.float64)
            
    tensor([[ 0.6035,  0.8110, -0.0451],
            [ 0.8797,  1.0482, -0.0445],
            [-0.7229,  2.8663, -0.5655],
            [ 0.1604, -0.0254,  1.0739],
            [ 2.2628, -0.9175, -0.2251]])
    

    我们可以通过shape或者size()来获取Tensor的形状:

    print(x.size())
    print(x.shape)
    

    输出:

    torch.Size([5, 3])
    torch.Size([5, 3])
    

    注意:返回的torch.Size其实就是一个tuple, 支持所有tuple的操作。

    还有很多函数可以创建Tensor,去翻翻官方API就知道了,下表给了一些常用的作参考。

    函数 功能
    Tensor(*sizes) 基础构造函数
    tensor(data,) 类似np.array的构造函数
    ones(*sizes) 全1Tensor
    zeros(*sizes) 全0Tensor
    eye(*sizes) 对角线为1,其他为0
    arange(s,e,step) 从s到e,步长为step
    linspace(s,e,steps) 从s到e,均匀切分成steps份
    rand/randn(*sizes) 均匀/标准分布
    normal(mean,std)/uniform(from,to) 正态分布/均匀分布
    randperm(m) 随机排列

    这些创建方法都可以在创建的时候指定数据类型dtype和存放device(cpu/gpu)。

    操作

    本小节介绍Tensor的各种操作。

    算术操作

    在PyTorch中,同一种操作可能有很多种形式,下面用加法作为例子。

    • 加法形式一

      y = torch.rand(5, 3)
      print(x + y)
      
    • 加法形式二

      print(torch.add(x, y))
      

      还可指定输出:

      result = torch.empty(5, 3)
      torch.add(x, y, out=result)
      print(result)
      
    • 加法形式三、inplace

      # adds x to y
      y.add_(x)
      print(y)
      

      注:PyTorch操作inplace版本都有后缀_, 例如x.copy_(y), x.t_()

    以上几种形式的输出均为:

    tensor([[ 1.3967,  1.0892,  0.4369],
            [ 1.6995,  2.0453,  0.6539],
            [-0.1553,  3.7016, -0.3599],
            [ 0.7536,  0.0870,  1.2274],
            [ 2.5046, -0.1913,  0.4760]])
    

    索引

    我们还可以使用类似NumPy的索引操作来访问Tensor的一部分,需要注意的是:索引出来的结果与原数据共享内存,也即修改一个,另一个会跟着修改。

    y = x[0, :]
    y += 1
    print(y)
    print(x[0, :]) # 源tensor也被改了
    

    输出:

    tensor([1.6035, 1.8110, 0.9549])
    tensor([1.6035, 1.8110, 0.9549])
    

    除了常用的索引选择数据之外,PyTorch还提供了一些高级的选择函数:

    函数 功能
    index_select(input, dim, index) 在指定维度dim上选取,比如选取某些行、某些列
    masked_select(input, mask) 例子如上,a[a>0],使用ByteTensor进行选取
    nonzero(input) 非0元素的下标
    gather(input, dim, index) 根据index,在dim维度上选取数据,输出的size与index一样

    这里不详细介绍,用到了再查官方文档。

    改变形状

    view()来改变Tensor的形状:

    y = x.view(15)
    z = x.view(-1, 5)  # -1所指的维度可以根据其他维度的值推出来
    print(x.size(), y.size(), z.size())
    

    输出:

    torch.Size([5, 3]) torch.Size([15]) torch.Size([3, 5])
    

    注意view()返回的新Tensor与源Tensor虽然可能有不同的size,但是是共享data的,也即更改其中的一个,另外一个也会跟着改变。(顾名思义,view仅仅是改变了对这个张量的观察角度,内部数据并未改变)

    x += 1
    print(x)
    print(y) # 也加了1
    

    输出:

    tensor([[1.6035, 1.8110, 0.9549],
            [1.8797, 2.0482, 0.9555],
            [0.2771, 3.8663, 0.4345],
            [1.1604, 0.9746, 2.0739],
            [3.2628, 0.0825, 0.7749]])
    tensor([1.6035, 1.8110, 0.9549, 1.8797, 2.0482, 0.9555, 0.2771, 3.8663, 0.4345,
            1.1604, 0.9746, 2.0739, 3.2628, 0.0825, 0.7749])
    

    所以如果我们想返回一个真正新的副本(即不共享data内存)该怎么办呢?Pytorch还提供了一个reshape()可以改变形状,但是此函数并不能保证返回的是其拷贝,所以不推荐使用。推荐先用clone创造一个副本然后再使用view参考此处

    x_cp = x.clone().view(15)
    x -= 1
    print(x)
    print(x_cp)
    

    输出:

    tensor([[ 0.6035,  0.8110, -0.0451],
            [ 0.8797,  1.0482, -0.0445],
            [-0.7229,  2.8663, -0.5655],
            [ 0.1604, -0.0254,  1.0739],
            [ 2.2628, -0.9175, -0.2251]])
            
    tensor([1.6035, 1.8110, 0.9549, 1.8797, 2.0482, 0.9555, 0.2771, 3.8663, 0.4345,
            1.1604, 0.9746, 2.0739, 3.2628, 0.0825, 0.7749])
    

    使用clone还有一个好处是会被记录在计算图中,即梯度回传到副本时也会传到源Tensor

    另外一个常用的函数就是item(), 它可以将一个标量Tensor转换成一个Python number:

    x = torch.randn(1)
    print(x)
    print(x.item())
    

    输出:

    tensor([2.3466])
    2.3466382026672363
    

    线性代数

    另外,PyTorch还支持一些线性函数,这里提一下,免得用起来的时候自己造轮子,具体用法参考官方文档。如下表所示:

    函数 功能
    trace 对角线元素之和(矩阵的迹)
    diag 对角线元素
    triu/tril 矩阵的上三角/下三角,可指定偏移量
    mm/bmm 矩阵乘法,batch的矩阵乘法
    addmm/addbmm/addmv/addr/baddbmm.. 矩阵运算
    t 转置
    dot/cross 内积/外积
    inverse 求逆矩阵
    svd 奇异值分解

    PyTorch中的Tensor支持超过一百种操作,包括转置、索引、切片、数学运算、线性代数、随机数等等,可参考官方文档

    广播机制

    前面我们看到如何对两个形状相同的Tensor做按元素运算。当对两个形状不同的Tensor按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个Tensor形状相同后再按元素运算。例如:

    x = torch.arange(1, 3).view(1, 2)
    print(x)
    y = torch.arange(1, 4).view(3, 1)
    print(y)
    print(x + y)
    

    输出:

    tensor([[1, 2]])
    
    tensor([[1],
            [2],
            [3]])
            
    tensor([[2, 3],
            [3, 4],
            [4, 5]])
    

    由于xy分别是1行2列和3行1列的矩阵,如果要计算x + y,那么x中第一行的2个元素被广播(复制)到了第二行和第三行,而y中第一列的3个元素被广播(复制)到了第二列。如此,就可以对2个3行2列的矩阵按元素相加。

    运算的内存开销

    前面说了,索引操作是不会开辟新内存的,而像y = x + y这样的运算是会新开内存的,然后将y指向新内存。为了演示这一点,我们可以使用Python自带的id函数:如果两个实例的ID一致,那么它们所对应的内存地址相同;反之则不同。

    x = torch.tensor([1, 2])
    y = torch.tensor([3, 4])
    id_before = id(y)
    y = y + x
    print(id(y) == id_before) # False 
    

    如果想指定结果到原来的y的内存,我们可以使用前面介绍的索引来进行替换操作。在下面的例子中,我们把x + y的结果通过[:]写进y对应的内存中。

    x = torch.tensor([1, 2])
    y = torch.tensor([3, 4])
    id_before = id(y)
    y[:] = y + x
    print(id(y) == id_before) # True
    

    我们还可以使用运算符全名函数中的out参数或者自加运算符+=(也即add_())达到上述效果,例如torch.add(x, y, out=y)y += x(y.add_(x))。

    x = torch.tensor([1, 2])
    y = torch.tensor([3, 4])
    id_before = id(y)
    torch.add(x, y, out=y) # y += x, y.add_(x)
    print(id(y) == id_before) # True
    

    注:虽然view返回的Tensor与源Tensor是共享data的,但是依然是一个新的Tensor(因为Tensor除了包含data外还有一些其他属性),二者id(内存地址)并不一致。

    Tensor和NumPy相互转换

    我们很容易用numpy()from_numpy()Tensor和NumPy中的数组相互转换。但是需要注意的一点是:
    这两个函数所产生的的Tensor和NumPy中的数组共享相同的内存(所以他们之间的转换很快),改变其中一个时另一个也会改变!!!

    还有一个常用的将NumPy中的array转换成Tensor的方法就是torch.tensor(), 需要注意的是,此方法总是会进行数据拷贝(就会消耗更多的时间和空间),所以返回的Tensor和原来的数据不再共享内存。

    Tensor转NumPy

    使用numpy()Tensor转换成NumPy数组:

    a = torch.ones(5)
    b = a.numpy()
    print(a, b)
    
    a += 1
    print(a, b)
    b += 1
    print(a, b)
    

    输出:

    tensor([1., 1., 1., 1., 1.]) [1. 1. 1. 1. 1.]
    tensor([2., 2., 2., 2., 2.]) [2. 2. 2. 2. 2.]
    tensor([3., 3., 3., 3., 3.]) [3. 3. 3. 3. 3.]
    

    NumPy数组转Tensor

    使用from_numpy()将NumPy数组转换成Tensor:

    import numpy as np
    a = np.ones(5)
    b = torch.from_numpy(a)
    print(a, b)
    
    a += 1
    print(a, b)
    b += 1
    print(a, b)
    

    输出:

    [1. 1. 1. 1. 1.] tensor([1., 1., 1., 1., 1.], dtype=torch.float64)
    [2. 2. 2. 2. 2.] tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
    [3. 3. 3. 3. 3.] tensor([3., 3., 3., 3., 3.], dtype=torch.float64)
    

    所有在CPU上的Tensor(除了CharTensor)都支持与NumPy数组相互转换。

    此外上面提到还有一个常用的方法就是直接用torch.tensor()将NumPy数组转换成Tensor,需要注意的是该方法总是会进行数据拷贝,返回的Tensor和原来的数据不再共享内存。

    c = torch.tensor(a)
    a += 1
    print(a, c)
    

    输出

    [4. 4. 4. 4. 4.] tensor([3., 3., 3., 3., 3.], dtype=torch.float64)
    

    Tensor on GPU

    用方法to()可以将Tensor在CPU和GPU(需要硬件支持)之间相互移动。

    # 以下代码只有在PyTorch GPU版本上才会执行
    if torch.cuda.is_available():
        device = torch.device("cuda")          # GPU
        y = torch.ones_like(x, device=device)  # 直接创建一个在GPU上的Tensor
        x = x.to(device)                       # 等价于 .to("cuda")
        z = x + y
        print(z)
        print(z.to("cpu", torch.double))       # to()还可以同时更改数据类型
    

    注: 本文主要参考PyTorch官方文档此处,与原书同一节有很大不同。

    自动求梯度

    在深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。本节将介绍如何使用autograd包来进行自动求梯度的有关操作。

    概念

    上一节介绍的Tensor是这个包的核心类,如果将其属性.requires_grad设置为True,它将开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了)。完成计算后,可以调用.backward()来完成所有梯度计算。此Tensor的梯度将累积到.grad属性中。

    注意在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor。解释见 2.3.2 节。

    如果不想要被继续追踪,可以调用.detach()将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪,这样梯度就传不过去了。此外,还可以用with torch.no_grad()将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(requires_grad=True)的梯度。

    Function是另外一个很重要的类。TensorFunction互相结合就可以构建一个记录有整个计算过程的有向无环图(DAG)。每个Tensor都有一个.grad_fn属性,该属性即创建该TensorFunction, 就是说该Tensor是不是通过某些运算得到的,若是,则grad_fn返回一个与这些运算相关的对象,否则是None。

    下面通过一些例子来理解这些概念。

    Tensor

    创建一个Tensor并设置requires_grad=True:

    x = torch.ones(2, 2, requires_grad=True)
    print(x)
    print(x.grad_fn)
    

    输出:

    tensor([[1., 1.],
            [1., 1.]], requires_grad=True)
    None
    

    再做一下运算操作:

    y = x + 2
    print(y)
    print(y.grad_fn)
    

    输出:

    tensor([[3., 3.],
            [3., 3.]], grad_fn=<AddBackward>)
            
    <AddBackward object at 0x1100477b8>
    

    注意x是直接创建的,所以它没有grad_fn, 而y是通过一个加法操作创建的,所以它有一个为<AddBackward>grad_fn

    像x这种直接创建的称为叶子节点,叶子节点对应的grad_fnNone

    print(x.is_leaf, y.is_leaf) # True False
    

    再来点复杂度运算操作:

    z = y * y * 3
    out = z.mean()
    print(z, out)
    

    输出:

    tensor([[27., 27.],
            [27., 27.]], grad_fn=<MulBackward>) tensor(27., grad_fn=<MeanBackward1>)
    

    通过.requires_grad_()来用in-place的方式改变requires_grad属性:

    a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
    a = ((a * 3) / (a - 1))
    print(a.requires_grad) # False
    
    a.requires_grad_(True)
    print(a.requires_grad) # True
    b = (a * a).sum()
    print(b.grad_fn)
    

    输出:

    False
    True
    <SumBackward0 object at 0x118f50cc0>
    

    梯度

    因为out是一个标量,所以调用backward()时不需要指定求导变量:

    out.backward() # 等价于 out.backward(torch.tensor(1.))
    

    我们来看看out关于x的梯度 (frac{d(out)}{dx}):

    print(x.grad)
    

    输出:

    tensor([[4.5000, 4.5000],
            [4.5000, 4.5000]])
    

    我们令out(o) , 因为

    [o=frac14sum_{i=1}^4z_i=frac14sum_{i=1}^43(x_i+2)^2 ]

    所以

    [frac{partial{o}}{partial{x_i}}igr vert_{x_i=1}=frac{9}{2}=4.5 ]

    所以上面的输出是正确的。

    数学上,如果有一个函数值和自变量都为向量的函数 (vec{y}=f(vec{x})), 那么 (vec{y}) 关于 (vec{x}) 的梯度就是一个雅可比矩阵(Jacobian matrix):

    [J=left(egin{array}{ccc} frac{partial y_{1}}{partial x_{1}} & cdots & frac{partial y_{1}}{partial x_{n}}\ vdots & ddots & vdots\ frac{partial y_{m}}{partial x_{1}} & cdots & frac{partial y_{m}}{partial x_{n}} end{array} ight) ]

    torch.autograd这个包就是用来计算一些雅克比矩阵的乘积的。例如,如果 (v) 是一个标量函数的 (l=gleft(vec{y} ight)) 的梯度:

    [v=left(egin{array}{ccc}frac{partial l}{partial y_{1}} & cdots & frac{partial l}{partial y_{m}}end{array} ight) ]

    那么根据链式法则我们有 (l) 关于 (vec{x}) 的雅克比矩阵就为:

    [v J=left(egin{array}{ccc}frac{partial l}{partial y_{1}} & cdots & frac{partial l}{partial y_{m}}end{array} ight) left(egin{array}{ccc} frac{partial y_{1}}{partial x_{1}} & cdots & frac{partial y_{1}}{partial x_{n}}\ vdots & ddots & vdots\ frac{partial y_{m}}{partial x_{1}} & cdots & frac{partial y_{m}}{partial x_{n}} end{array} ight)=left(egin{array}{ccc}frac{partial l}{partial x_{1}} & cdots & frac{partial l}{partial x_{n}}end{array} ight) ]

    注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以一般在反向传播之前需把梯度清零。

    # 再来反向传播一次,注意grad是累加的
    out2 = x.sum()
    out2.backward()
    print(x.grad)
    
    out3 = x.sum()
    x.grad.data.zero_()
    out3.backward()
    print(x.grad)
    

    输出:

    tensor([[5.5000, 5.5000],
            [5.5000, 5.5000]])
            
    tensor([[1., 1.],
            [1., 1.]])
    

    现在我们解释2.3.1节留下的问题,为什么在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor?
    简单来说就是为了避免向量(甚至更高维张量)对张量求导,而转换成标量对张量求导。举个例子,假设形状为 m x n 的矩阵 X 经过运算得到了 p x q 的矩阵 Y,Y 又经过运算得到了 s x t 的矩阵 Z。那么按照前面讲的规则,dZ/dY 应该是一个 s x t x p x q 四维张量,dY/dX 是一个 p x q x m x n的四维张量。问题来了,怎样反向传播?怎样将两个四维张量相乘???这要怎么乘???就算能解决两个四维张量怎么乘的问题,四维和三维的张量又怎么乘?导数的导数又怎么求,这一连串的问题,感觉要疯掉……
    为了避免这个问题,我们不允许张量对张量求导,只允许标量对张量求导,求导结果是和自变量同形的张量。所以必要时我们要把张量通过将所有张量的元素加权求和的方式转换为标量,举个例子,假设y由自变量x计算而来,w是和y同形的张量,则y.backward(w)的含义是:先计算l = torch.sum(y * w),则l是个标量,然后求l对自变量x的导数。
    参考

    来看一些实际例子。

    x = torch.tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)
    y = 2 * x
    z = y.view(2, 2)
    print(z)
    

    输出:

    tensor([[2., 4.],
            [6., 8.]], grad_fn=<ViewBackward>)
    

    现在 z 不是一个标量,所以在调用backward时需要传入一个和z同形的权重向量进行加权求和得到一个标量。

    v = torch.tensor([[1.0, 0.1], [0.01, 0.001]], dtype=torch.float)
    z.backward(v)
    print(x.grad)
    

    输出:

    tensor([2.0000, 0.2000, 0.0200, 0.0020])
    

    注意,x.grad是和x同形的张量。

    再来看看中断梯度追踪的例子:

    x = torch.tensor(1.0, requires_grad=True)
    y1 = x ** 2 
    with torch.no_grad():
        y2 = x ** 3
    y3 = y1 + y2
        
    print(x.requires_grad)
    print(y1, y1.requires_grad) # True
    print(y2, y2.requires_grad) # False
    print(y3, y3.requires_grad) # True
    

    输出:

    True
    tensor(1., grad_fn=<PowBackward0>) True
    tensor(1.) False
    tensor(2., grad_fn=<ThAddBackward>) True
    

    可以看到,上面的y2是没有grad_fn而且y2.requires_grad=False的,而y3是有grad_fn的。如果我们将y3x求梯度的话会是多少呢?

    y3.backward()
    print(x.grad)
    

    输出:

    tensor(2.)
    

    为什么是2呢?$ y_3 = y_1 + y_2 = x^2 + x^3$,当 (x=1)(frac {dy_3} {dx}) 不应该是5吗?事实上,由于 (y_2) 的定义是被torch.no_grad():包裹的,所以与 (y_2) 有关的梯度是不会回传的,只有与 (y_1) 有关的梯度才会回传,即 (x^2)(x) 的梯度。

    上面提到,y2.requires_grad=False,所以不能调用 y2.backward(),会报错:

    RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
    

    此外,如果我们想要修改tensor的数值,但是又不希望被autograd记录(即不会影响反向传播),那么我么可以对tensor.data进行操作。

    x = torch.ones(1,requires_grad=True)
    
    print(x.data) # 还是一个tensor
    print(x.data.requires_grad) # 但是已经是独立于计算图之外
    
    y = 2 * x
    x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播
    
    y.backward()
    print(x) # 更改data的值也会影响tensor的值
    print(x.grad)
    

    输出:

    tensor([1.])
    False
    tensor([100.], requires_grad=True)
    tensor([2.])
    

    注: 本文主要参考PyTorch官方文档,与原书同一节有很大不同。

    作者:鄂河
    声明:本博客所有文章均来源于网络或本人原创,仅用于学习用途,欢迎评论区讨论,会逐一完善内容。
  • 相关阅读:
    C#基础知识汇总(不断更新中)
    比较两个DataTable是否相等
    C#利用SerialPort控件进行串口编程小记
    C# ListBox 自动滚动到底部 方法:
    IIS配置文件的XML格式不正确 applicationHost.config崩溃 恢复解决办法
    net4log 添加自定义变量
    net4log 日志管理
    C#实现加简单的Http请求
    H5,Css小姐又作画了
    H5 ,Css实现了你的logo
  • 原文地址:https://www.cnblogs.com/panghuhu/p/14269109.html
Copyright © 2020-2023  润新知