边双联通分量
数据很水,随便乱搞。。
先把所有边双找出来,然后缩点。之后如果新加的边在同一个边双,那桥的数量不变,如果在不同的边双,就一直往上跳到两个点的LCA,通过的边如果没被标记,就标记一下,标记了就不再是桥了。。超级暴力!
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 200005;
int n, m, cnt, k, tot, t, ans, head[N], dfn[N], low[N], c[N], first[N], cur, p[N][20], depth[N], from[N];
bool bri[N<<2], kills[N<<2];
struct Edge { int v, next; } edge[N<<2], e[N<<2];
void addEdge(int a, int b){
edge[cnt].v = b, edge[cnt].next = head[a], head[a] = cnt ++;
}
void link(int a, int b){
e[cur].v = b, e[cur].next = first[a], first[a] = cur ++;
}
void tarjan(int s, int pre){
dfn[s] = low[s] = ++k;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(!dfn[u]){
tarjan(u, i);
low[s] = min(low[s], low[u]);
if(low[u] > dfn[s]) bri[i] = bri[i^1] = true;
}
else if(i != (pre^1)) low[s] = min(low[s], dfn[u]);
}
}
void dfs(int s){
c[s] = tot;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(c[u] || bri[i]) continue;
dfs(u);
}
}
void dfs(int s, int fa){
p[s][0] = fa, depth[s] = depth[fa] + 1;
for(int i = 1; i <= t; i ++){
p[s][i] = p[p[s][i - 1]][i - 1];
}
for(int i = first[s]; i != -1; i = e[i].next){
int u = e[i].v;
if(u == fa) continue;
from[u] = i;
dfs(u, s);
}
}
int lca(int x, int y){
if(depth[x] < depth[y]) swap(x, y);
for(int i = t; i >= 0; i --){
if(depth[p[x][i]] >= depth[y]) x = p[x][i];
}
if(x == y) return y;
for(int i = t; i >= 0; i --){
if(p[x][i] == p[y][i]) continue;
x = p[x][i], y = p[y][i];
}
return p[y][0];
}
void build(){
cnt = 2;
k = tot = t = ans = cur = 0;
full(head, -1), full(first, -1);
full(dfn, 0), full(low, 0);
full(c, 0), full(depth, 0);
full(p, 0), full(from, 0);
full(bri, false), full(kills, false);
}
int main(){
int _ = 0;
n = read(), m = read();
while(n && m){
build();
for(int i = 0; i < m; i++){
int u = read(), v = read();
addEdge(u, v), addEdge(v, u);
}
for(int i = 1; i <= n; i++){
if(!dfn[i]) tarjan(i, 0);
}
for(int i = 1; i <= n; i++){
if(!c[i]) ++tot, dfs(i);
}
for(int i = 2; i < cnt; i += 2){
int u = edge[i^1].v, v = edge[i].v;
if(c[u] != c[v]) link(c[u], c[v]), link(c[v], c[u]);
if(bri[i]) ans++;
}
t = (int) (log(n) / log(2)) + 1;
dfs(1, 0);
int q = read();
printf("Case %d:
", ++_);
while(q--){
int u = read(), v = read();
if(c[u] == c[v]) printf("%d
", ans);
else{
int num = 0;
int f = lca(c[u], c[v]);
int tmp = c[u];
while(tmp != f){
if(!kills[from[tmp]]){
kills[from[tmp]] = kills[from[tmp]^1] = true;
num++;
}
tmp = p[tmp][0];
}
tmp = c[v];
while(tmp != f){
if(!kills[from[tmp]]){
kills[from[tmp]] = kills[from[tmp]^1] = true;
num++;
}
tmp = p[tmp][0];
}
ans -= num;
printf("%d
", ans);
}
}
n = read(), m = read();
}
return 0;
}