• P2486 [SDOI2011]染色


    (color{#0066ff}{ 题目描述 })

    (color{#0066ff}{输入格式})

    (color{#0066ff}{输出格式})

    对于每个询问操作,输出一行答案。

    (color{#0066ff}{输入样例})

    6 5
    2 2 1 2 1 1
    1 2
    1 3
    2 4
    2 5
    2 6
    Q 3 5
    C 2 1 1
    Q 3 5
    C 5 1 2
    Q 3 5
    

    (color{#0066ff}{输出样例})

    3
    1
    2
    

    (color{#0066ff}{数据范围与提示})

    (color{#0066ff}{ 题解 })

    树剖

    线段树维护:区间两端点的颜色,区间颜色段数

    区间合并的时候判断一下端点颜色即可

    树剖的时候一起要判断端点处,那变量记录一下重链的上下,就是线段树区间query[l,r]的两端点颜色

    如果相同要--

    #include<bits/stdc++.h>
    #define LL long long
    LL in() {
    	char ch; LL x = 0, f = 1;
    	while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    	for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    	return x * f;
    }
    const int maxn = 1e5 + 10;
    struct node {
    	int to;
    	node *nxt;
    	node(int to = 0, node *nxt = NULL): to(to), nxt(nxt) {}
    	void *operator new(size_t) {
    		static node *S = NULL, *T = NULL;
    		return (S == T) && (T = (S = new node[1024]) + 1024), S++;
    	}
    };
    struct Tree {
    protected:
    	int lc, rc;
    	struct node {
    		node *ch[2];
    		int l, r, num, tag;
    		int lc, rc;
    		node(int l = 0, int r = 0, int num = 1, int tag = -1, int lc = 0, int rc = 0)
    			:l(l), r(r), num(num), tag(tag), lc(lc), rc(rc) { ch[0] = ch[1] = NULL; }
    		void upd() {
    			num = ch[0]->num + ch[1]->num;
    			if(ch[0]->rc == ch[1]->lc) num--;
    			lc = ch[0]->lc;
    			rc = ch[1]->rc;
    		}
    		void trn(int c) {
    			num = 1;
    			lc = rc = tag = c;
    		}
    		void dwn() {
    			if(~tag) {
    				ch[0]->trn(tag);
    				ch[1]->trn(tag);
    				tag = -1;
    			}
    		}
    	};
    	node *root;
    	void build(node *&o, int l, int r, int *val, int *rev) {
    		o = new Tree::node(l, r, 1, -1, 0, 0);
    		if(l == r) return (void)(*o = Tree::node(l, r, 1, -1, val[rev[l]], val[rev[l]]));
    		int mid = (l + r) >> 1;
    		build(o->ch[0], l, mid, val, rev);
    		build(o->ch[1], mid + 1, r, val, rev);
    		o->upd();
    	}
    	void lazy(node *o, int l, int r, int c) {
    		if(o->r < l || o->l > r) return;
    		if(l <= o->l && o->r <= r) {
    			o->tag = o->lc = o->rc = c;
    			o->num = 1;
    			return;
    		}
    		o->dwn();
    		lazy(o->ch[0], l, r, c), lazy(o->ch[1], l, r, c);
    		o->upd();
    	}
    	int query(node *o, int l, int r) {
    		if(o->r < l || o->l > r) return 0;
    		if(o->l == l) lc = o->lc;
    		if(o->r == r) rc = o->rc;
    		if(l <= o->l && o->r <= r) return o->num;
    		o->dwn();
    		int lans = query(o->ch[0], l, r);
    		int rans = query(o->ch[1], l, r);
    		o->upd();
    		if(lans && rans && o->ch[0]->rc == o->ch[1]->lc) return lans + rans - 1;
    		return lans + rans;
    	}
    public:
    	int L() { return lc; }
    	int R() { return rc; }
    	void build(int l, int r, int *val, int *rev) { build(root, l, r, val, rev); }
    	void lazy(int l, int r, int c) { lazy(root, l, r, c); }
    	int query(int l, int r) { return query(root, l, r); }
    }t;
    node *head[maxn];
    int top[maxn], dfn[maxn], redfn[maxn], son[maxn];
    int siz[maxn], fa[maxn], val[maxn], cnt, dep[maxn];
    int n, m;
    void add(int from, int to) { head[from] = new node(to, head[from]); }
    char getch() {
    	char ch;
    	while(!isalpha(ch = getchar()));
    	return ch;
    }
    void dfs1(int x, int f) {
    	fa[x] = f;
    	dep[x] = dep[f] + 1;
    	siz[x] = 1;
    	for(node *i = head[x]; i; i = i->nxt) {
    		if(i->to == f) continue;
    		dfs1(i->to, x);
    		siz[x] += siz[i->to];
    		if(!son[x] || siz[i->to] > siz[son[x]]) son[x] = i->to;
    	}
    }
    void dfs2(int x, int t) {
    	top[redfn[dfn[x] = ++cnt] = x] = t;
    	if(son[x]) dfs2(son[x], t);
    	for(node *i = head[x]; i; i = i->nxt)
    		if(!dfn[i->to]) 
    			dfs2(i->to, i->to);
    }
    void addpath(int x, int y, int c) {
    	int fx = top[x], fy = top[y];
    	while(fx != fy) {
    		if(dep[fx] >= dep[fy]) {
    			t.lazy(dfn[fx], dfn[x], c);
    			x = fa[fx];
    		}
    		else {
    			t.lazy(dfn[fy], dfn[y], c);
    			y = fa[fy];
    		}
    		fx = top[x];
    		fy = top[y];
    	}
    	if(dep[x] > dep[y]) t.lazy(dfn[y], dfn[x], c);
    	else t.lazy(dfn[x], dfn[y], c);
    }
    int querypath(int x, int y) {
    	int ans = 0, ansl = -1, ansr = -1;
    	int fx = top[x], fy = top[y];
    	while(fx != fy) {
    		if(dep[fx] >= dep[fy]) {
    			ans += t.query(dfn[fx], dfn[x]);
    			if(t.R() == ansl) ans--;
    			ansl = t.L();
    			x = fa[fx];
    		}
    		else {
    			ans += t.query(dfn[fy], dfn[y]);
    			if(t.R() == ansr) ans--;
    			ansr = t.L();
    			y = fa[fy];
    		}
    		fx = top[x];
    		fy = top[y];
    	}
    	if(dep[x] > dep[y]) {
    		ans += t.query(dfn[y], dfn[x]);
    		if(t.L() == ansr) ans--;
    		if(t.R() == ansl) ans--;
    	}
    	else {
    		ans += t.query(dfn[x], dfn[y]);
    		if(t.L() == ansl) ans--;
    		if(t.R() == ansr) ans--;
    	}
    	return ans;
    }
    int main() {
    	n = in(), m = in();
    	for(int i = 1; i <= n; i++) val[i] = in();
    	int x, y, z;
    	for(int i = 1; i < n; i++) x = in(), y = in(), add(x, y), add(y, x);
    	dfs1(1, 0), dfs2(1, 1), t.build(1, n, val, redfn);
    	while(m --> 0) {
    		if(getch() == 'C') {
    			x = in(), y = in(), z = in();
    			addpath(x, y, z);
    		}
    		else {
    			x = in(), y = in();
    			printf("%d
    ", querypath(x, y));
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    C++ fstream 用法
    Servlet详解(转)
    JSP&Servlet(转)
    我们工作是为了什么!
    常见C C++问题(转)
    一份诚恳的互联网找工作总结和感想(附:怎样花两年时间去面试一个人)
    第一篇
    洛谷p1064 金明的预算方法
    onload、DOMContentLoaded与性能问题
    jsbin本地部署
  • 原文地址:https://www.cnblogs.com/olinr/p/10351645.html
Copyright © 2020-2023  润新知