题目描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
输入
输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
输出
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
样例输入
3
1 2 9
样例输出
15
题解
就是先排一下序,然后两个相加,加出来的数放到另一个数组里,然后每
#include <bits/stdc++.h> #define ll long long #define met(a) memset(a,0,sizeof(a)) #define inf 0x3f3f3f3f using namespace std; const int mod=1e9+7; int a[10010]; int main() { int i,j,k,m,n; cin>>n; for (i = 1; i <=n; i++) cin >> a[i]; sort(a+1,a+n+1); int st = 1, ed = n+1, st1 = 0, ed1 = 0; ll ans=0,cnt; while (1) { cnt=0; if (st == ed&&st1 + 1 == ed1) break; for (j =1; j <=2; j++) { if (st != ed) { if (st1 != ed1) if(a[st]<a[st1]) { cnt+=a[st]; st++; } else { cnt+=a[st1]; st1++; } else { cnt+= a[st]; st++; } } else { cnt += a[st1]; st1++; } } ans += cnt; a[ed1++] = cnt; } cout << ans<< endl; return 0; }
到一个就比较二者的大小。