http://poj.org/problem?id=1797
题意:n个城市,m条双向边每条边有个承受重量权值,问1到n最大承重量。
解法:初始化为0,选权值大的边,更新:如果dis[j] < min(dis[pos] , ma[pos][j]) 这样更新使得到达j的承重量尽可能的大。
//#include<bits/stdc++.h> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <string> #include <stdio.h> #include <queue> #include <stack> #include <map> #include <set> #include <string.h> #include <vector> #include <stdlib.h> using namespace std; typedef long long ll ; #define int ll #define mod 100 #define gcd(m,n) __gcd(m, n) #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //int lcm(int a , int b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define pb push_back #define mp make_pair #define all(v) v.begin(),v.end() #define size(v) (int)(v.size()) #define cin(x) scanf("%lld" , &x); const int N = 1e5+9; const int maxn = 1e3+9; const double esp = 1e-6; int ma[maxn][maxn] , vis[maxn] , dis[maxn]; int n , m , cnt; void dijkstra(int u){ rep(i , 1 , n){ dis[i] = ma[u][i]; } vis[u] = 1 ; rep(i , 1 , n-1){ int pos ; int maxx = -INF; rep(j , 1 , n){ if(!vis[j] && maxx < dis[j]){ pos = j ; maxx = dis[j]; } } vis[pos] = 1 ; rep(j , 1 , n){ if(!vis[j] && min(dis[pos] , ma[pos][j]) > dis[j]){ dis[j] = min(dis[pos] , ma[pos][j]); } } } } void init(){ ME(ma , 0); ME(vis , 0); } void solve(){ init(); scanf("%lld%lld" , &n , &m); rep(i , 1 , m){ int u , v , w ; scanf("%lld%lld%lld" , &u , &v , &w); ma[u][v] = ma[v][u] = max(ma[v][u] , w); } dijkstra(1); cout << "Scenario #" << ++cnt << ":" << endl << dis[n] << endl << endl; } signed main() { init(); int t ; cin >> t ; while(t--){ solve(); } }
http://poj.org/problem?id=2253
题意:一只青蛙要跳到另一只青蛙的所在石头,给出n个石头,从1到n,使跳跃的所需最小距离范围最小为多少?
解法:更新:如果dis[j] > max(dis[pos] , pos[j]) , 使得到达dis【j】的最长距离最小
//#include<bits/stdc++.h> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <string> #include <stdio.h> #include <queue> #include <stack> #include <map> #include <set> #include <string.h> #include <vector> #include <stdlib.h> using namespace std; typedef long long ll ; #define int ll #define mod 1000000007 #define gcd(m,n) __gcd(m, n) #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) int lcm(int a , int b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define pb push_back #define mp make_pair #define all(v) v.begin(),v.end() #define size(v) (int)(v.size()) #define cin(x) scanf("%lld" , &x); const int N = 1e7+9; const int maxn = 2e2+9; const double esp = 1e-6; double ma[maxn][maxn]; double dis[maxn]; int vis[maxn], n , m, cnt; pii a[maxn]; void dijia(int r){ rep(i , 1 , n){ dis[i] = ma[r][i]; } vis[r] = 1 ; rep(i , 1 , n-1){ int pos ; double mi = INF; rep(j , 1 , n){ if(!vis[j] && mi > dis[j]){ pos = j ; mi = dis[j]; } } vis[pos] = 1 ; rep(j , 1 , n){ double x = max(dis[pos] , ma[pos][j]); if(!vis[j] && x < dis[j]){ dis[j] = x ; } } } } void init(){ fill(ma[0] , ma[0]+maxn*maxn , INF); ME(vis,0); } void solve(){ init(); int bx , by , ex , ey; scanf("%lld%lld%lld%lld" , &bx , &by , &ex , &ey); a[1].fi = bx , a[1].se = by , a[n].fi = ex , a[n].se = ey; rep(i , 2 , n-1){ int u , v ; scanf("%lld%lld" , &a[i].fi , &a[i].se); } rep(i , 1 , n){ rep(j , 1 , i-1){ ma[i][j] = ma[j][i] = min(ma[i][j] , sqrt((a[i].fi - a[j].fi)*(a[i].fi - a[j].fi) + (a[i].se - a[j].se) * (a[i].se - a[j].se))); } } dijia(1); cout << "Scenario #" << ++cnt << endl; printf("Frog Distance = %.3f " , dis[n]); } signed main() { //int t ; //cin >> t ; //while(t--) while(~scanf("%lld" , &n) && n) solve(); }