2. 用MULTI/EXEC 来把多个命令组装成一次发送,达到原子性(有点像命令具有打包功能)
3. 用WATCH提供的乐观锁功能,在你EXEC的那一刻,如果被WATCH的键发生过改动,则MULTI到EXEC之间的指令全部不执行,不需要rollback
Discard 命令
Discard 命令用于取消事务,放弃执行事务块内的所有命令。
可用版本
>= 2.0.0
返回值
总是返回 OK 。
事务回滚情况一: 事务回滚,执行事务过程中,命令格式正确,数据类型错误
我们将 key1 设置为字符串,而使用命令 incr 对其自增,但是命令只会进入事务队列,而没有被执行,所以它不会有任何的错误发生,而是等待 exec 命令的执行。
当 exec 命令执行后,之前进入队列的命令就依次执行,当遇到 incr 时发生命令操作的数据类型错误,所以显示出了错误,而其之前和之后的命令都会被正常执行.
事务回滚情况二: 事务回滚,执行事务过程中,命令格式错误
可以看到我们使用的 incr 命令格式是错误的,这个时候 Redis 会立即检测出来并产生错误,而在此之前我们设置了 keyl , 在此之后我们设置了 key2 a 当事务执行的时候,我们发现 keyl 和 key2 的值都为空,说明被 Redis 事务回滚了。
通过上面两个例子,可以看出Redis在执行事务命令的时候,在命令入队的时候, Redis 就会检测事务的命令是否正确,如果不正确则会产生错误。无论之前和之后的命令都会被事务所回滚,就变为什么都没有执行。
当命令格式正确,而因为操作数据结构引起的错误 ,则该命令执行出现错误,而其之前和之后的命令都会被正常执行。这点和数据库很不一样,这是需注意的地方。
对于一些重要的操作,我们必须通过程序去检测数据的正确性,以保证 Redis 事务的正确执行,避免出现数据不一致的情况。 Redis 之所以保持这样简易的事务,完全是为了保证移动互联网的核心问题一----性能。
情况类型:watch -> multi -> exec (修改key之前,先watch,在exec之前,开启另一个客户端修改key值观察事务是否执行)
客户端一提前设置key1、key2的值为1、2
客户端一执行watch之后修改key1、key2的值,为2、3,在提交这两个命令的事务之前,开启另一个客户端二修改key1的值为10,之后提交客户端一的事务
客户端二
这时候发现客户端一中提交的两个命令都没有生效。
情况类型:会出现乐观锁的ABA问题吗
客户端一
客户端二
在客户端执行exec事务提交命令之前,通过客户端二两次修改key1的值,最终使得key1的值回复原样,之后执行客户端一的exec事务命令,查看事务的执行情况。
结论: redis不存在ABA问题,只有事务执行过程中值被其他线程改变过,事务就会回滚,原理是什么呢?
redis事务实现的底层原理
开启事务
MULTI 命令的执行标记着事务的开始:
redis> MULTI
OK
这个命令唯一做的就是, 将客户端的 REDIS_MULTI
选项打开, 让客户端从非事务状态切换到事务状态。
命令入队
当客户端处于非事务状态下时, 所有发送给服务器端的命令都会立即被服务器执行:
redis> SET msg "hello moto" OK redis> GET msg "hello moto"
但是, 当客户端进入事务状态之后, 服务器在收到来自客户端的命令时, 不会立即执行命令, 而是将这些命令全部放进一个事务队列里, 然后返回 QUEUED
, 表示命令已入队:
redis> MULTI OK redis> SET msg "hello moto" QUEUED redis> GET msg QUEUED
以下流程图展示了这一行为:
事务队列是一个数组, 每个数组项是都包含三个属性:
- 要执行的命令(cmd)。
- 命令的参数(argv)。
- 参数的个数(argc)。
举个例子, 如果客户端执行以下命令:
redis> MULTI OK redis> SET book-name "Mastering C++ in 21 days" QUEUED redis> GET book-name QUEUED redis> SADD tag "C++" "Programming" "Mastering Series" QUEUED redis> SMEMBERS tag QUEUED
那么程序将为客户端创建以下事务队列:
执行事务
前面说到, 当客户端进入事务状态之后, 客户端发送的命令就会被放进事务队列里。
但其实并不是所有的命令都会被放进事务队列, 其中的例外就是 EXEC 、 DISCARD 、 MULTI 和 WATCH 这四个命令 —— 当这四个命令从客户端发送到服务器时, 它们会像客户端处于非事务状态一样, 直接被服务器执行:
如果客户端正处于事务状态, 那么当 EXEC 命令执行时, 服务器根据客户端所保存的事务队列, 以先进先出(FIFO)的方式执行事务队列中的命令: 最先入队的命令最先执行, 而最后入队的命令最后执行。
比如说,对于以下事务队列:
程序会首先执行 SET 命令, 然后执行 GET 命令, 再然后执行 SADD 命令, 最后执行 SMEMBERS 命令。
执行事务中的命令所得的结果会以 FIFO 的顺序保存到一个回复队列中。
比如说,对于上面给出的事务队列,程序将为队列中的命令创建如下回复队列:
当事务队列里的所有命令被执行完之后, EXEC 命令会将回复队列作为自己的执行结果返回给客户端, 客户端从事务状态返回到非事务状态, 至此, 事务执行完毕。
事务的整个执行过程可以用以下伪代码表示:
def execute_transaction(): # 创建空白的回复队列 reply_queue = [] # 取出事务队列里的所有命令、参数和参数数量 for cmd, argv, argc in client.transaction_queue: # 执行命令,并取得命令的返回值 reply = execute_redis_command(cmd, argv, argc) # 将返回值追加到回复队列末尾 reply_queue.append(reply) # 清除客户端的事务状态 clear_transaction_state(client) # 清空事务队列 clear_transaction_queue(client) # 将事务的执行结果返回给客户端 send_reply_to_client(client, reply_queue)
在事务和非事务状态下执行命令
无论在事务状态下, 还是在非事务状态下, Redis 命令都由同一个函数执行, 所以它们共享很多服务器的一般设置, 比如 AOF 的配置、RDB 的配置,以及内存限制,等等。
不过事务中的命令和普通命令在执行上还是有一点区别的,其中最重要的两点是:
(1)非事务状态下的命令以单个命令为单位执行,前一个命令和后一个命令的客户端不一定是同一个;
而事务状态则是以一个事务为单位,执行事务队列中的所有命令:除非当前事务执行完毕,否则服务器不会中断事务,也不会执行其他客户端的其他命令。
(2)在非事务状态下,执行命令所得的结果会立即被返回给客户端;
而事务则是将所有命令的结果集合到回复队列,再作为 EXEC 命令的结果返回给客户端。
事务状态下的 DISCARD 、 MULTI 和 WATCH 命令
除了 EXEC 之外, 服务器在客户端处于事务状态时, 不加入到事务队列而直接执行的另外三个命令是 DISCARD 、 MULTI 和 WATCH 。
DISCARD 命令用于取消一个事务, 它清空客户端的整个事务队列, 然后将客户端从事务状态调整回非事务状态, 最后返回字符串 OK 给客户端, 说明事务已被取消。
Redis 的事务是不可嵌套的, 当客户端已经处于事务状态, 而客户端又再向服务器发送 MULTI 时, 服务器只是简单地向客户端发送一个错误, 然后继续等待其他命令的入队。 MULTI 命令的发送不会造成整个事务失败, 也不会修改事务队列中已有的数据。
WATCH 只能在客户端进入事务状态之前执行, 在事务状态下发送 WATCH 命令会引发一个错误, 但它不会造成整个事务失败, 也不会修改事务队列中已有的数据(和前面处理 MULTI 的情况一样)。
带 WATCH 的事务
WATCH 命令用于在事务开始之前监视任意数量的键: 当调用 EXEC 命令执行事务时, 如果任意一个被监视的键已经被其他客户端修改了, 那么整个事务不再执行, 直接返回失败。
以下示例展示了一个执行失败的事务例子:
redis> WATCH name OK redis> MULTI OK redis> SET name peter QUEUED redis> EXEC (nil)
以下执行序列展示了上面的例子是如何失败的:
在时间 T4 ,客户端 B 修改了 name 键的值, 当客户端 A 在 T5 执行 EXEC 时,Redis 会发现 name 这个被监视的键已经被修改, 因此客户端 A 的事务不会被执行,而是直接返回失败。
下文就来介绍 WATCH 的实现机制,并且看看事务系统是如何检查某个被监视的键是否被修改,从而保证事务的安全性的。
WATCH 命令的实现
在每个代表数据库的 redis.h/redisDb 结构类型中, 都保存了一个 watched_keys 字典, 字典的键是这个数据库被监视的键, 而字典的值则是一个链表, 链表中保存了所有监视这个键的客户端。
比如说,以下字典就展示了一个 watched_keys 字典的例子:
其中, 键 key1 正在被 client2 、 client5 和 client1 三个客户端监视, 其他一些键也分别被其他别的客户端监视着。
WATCH 命令的作用, 就是将当前客户端和要监视的键在 watched_keys 中进行关联。
举个例子, 如果当前客户端为 client10086 , 那么当客户端执行 WATCH key1 key2 时, 前面展示的 watched_keys 将被修改成这个样子:
通过 watched_keys 字典, 如果程序想检查某个键是否被监视, 那么它只要检查字典中是否存在这个键即可; 如果程序要获取监视某个键的所有客户端, 那么只要取出键的值(一个链表), 然后对链表进行遍历即可。
WATCH 的触发
在任何对数据库键空间(key space)进行修改的命令成功执行之后 (比如 FLUSHDB 、 SET 、 DEL 、 LPUSH 、 SADD 、 ZREM ,诸如此类), multi.c/touchWatchedKey 函数都会被调用 —— 它检查数据库的 watched_keys 字典, 看是否有客户端在监视已经被命令修改的键, 如果有的话, 程序将所有监视这个/这些被修改键的客户端的 REDIS_DIRTY_CAS 选项打开:
当客户端发送 EXEC 命令、触发事务执行时, 服务器会对客户端的状态进行检查:
如果客户端的 REDIS_DIRTY_CAS 选项已经被打开,那么说明被客户端监视的键至少有一个已经被修改了,事务的安全性已经被破坏。服务器会放弃执行这个事务,直接向客户端返回空回复,表示事务执行失败。
如果 REDIS_DIRTY_CAS 选项没有被打开,那么说明所有监视键都安全,服务器正式执行事务。
可以用一段伪代码来表示这个检查:
def check_safety_before_execute_trasaction(): if client.state & REDIS_DIRTY_CAS: # 安全性已破坏,清除事务状态 clear_transaction_state(client) # 清空事务队列 clear_transaction_queue(client) # 返回空回复给客户端 send_empty_reply(client) else: # 安全性完好,执行事务 execute_transaction()
举个例子,假设数据库的 watched_keys
字典如下图所示:
如果某个客户端对 key1 进行了修改(比如执行 DEL key1 ), 那么所有监视 key1 的客户端, 包括 client2 、 client5 和 client1 的 REDIS_DIRTY_CAS 选项都会被打开, 当客户端 client2 、 client5 和 client1 执行 EXEC 的时候, 它们的事务都会以失败告终。
最后,当一个客户端结束它的事务时,无论事务是成功执行,还是失败, watched_keys 字典中和这个客户端相关的资料都会被清除。
事务的 ACID 性质
在传统的关系式数据库中,常常用 ACID 性质来检验事务功能的安全性。
Redis 事务保证了其中的一致性(C)和隔离性(I),但并不保证原子性(A)和持久性(D)。
以下四小节是关于这四个性质的详细讨论。
原子性(Atomicity)
单个 Redis 命令的执行是原子性的,但 Redis 没有在事务上增加任何维持原子性的机制,所以 Redis 事务的执行并不是原子性的。
如果一个事务队列中的所有命令都被成功地执行,那么称这个事务执行成功。
另一方面,如果 Redis 服务器进程在执行事务的过程中被停止 —— 比如接到 KILL 信号、宿主机器停机,等等,那么事务执行失败。
当事务失败时,Redis 也不会进行任何的重试或者回滚动作。
一致性(Consistency)
Redis 的一致性问题可以分为三部分来讨论:入队错误、执行错误、Redis 进程被终结。
入队错误
在命令入队的过程中,如果客户端向服务器发送了错误的命令,比如命令的参数数量不对,等等, 那么服务器将向客户端返回一个出错信息, 并且将客户端的事务状态设为 REDIS_DIRTY_EXEC 。
当客户端执行 EXEC 命令时, Redis 会拒绝执行状态为 REDIS_DIRTY_EXEC 的事务, 并返回失败信息。
redis 127.0.0.1:6379> MULTI OK redis 127.0.0.1:6379> set key (error) ERR wrong number of arguments for 'set' command redis 127.0.0.1:6379> EXISTS key QUEUED redis 127.0.0.1:6379> EXEC (error) EXECABORT Transaction discarded because of previous errors.
因此,带有不正确入队命令的事务不会被执行,也不会影响数据库的一致性。
执行错误
如果命令在事务执行的过程中发生错误,比如说,对一个不同类型的 key 执行了错误的操作, 那么 Redis 只会将错误包含在事务的结果中, 这不会引起事务中断或整个失败,不会影响已执行事务命令的结果,也不会影响后面要执行的事务命令, 所以它对事务的一致性也没有影响。
Redis 进程被终结
如果 Redis 服务器进程在执行事务的过程中被其他进程终结,或者被管理员强制杀死,那么根据 Redis 所使用的持久化模式,可能有以下情况出现:
内存模式:如果 Redis 没有采取任何持久化机制,那么重启之后的数据库总是空白的,所以数据总是一致的。
RDB 模式:在执行事务时,Redis 不会中断事务去执行保存 RDB 的工作,只有在事务执行之后,保存 RDB 的工作才有可能开始。所以当 RDB 模式下的 Redis 服务器进程在事务中途被杀死时,事务内执行的命令,不管成功了多少,都不会被保存到 RDB 文件里。恢复数据库需要使用现有的 RDB 文件,而这个 RDB 文件的数据保存的是最近一次的数据库快照(snapshot),所以它的数据可能不是最新的,但只要 RDB 文件本身没有因为其他问题而出错,那么还原后的数据库就是一致的。
AOF 模式:因为保存 AOF 文件的工作在后台线程进行,所以即使是在事务执行的中途,保存 AOF 文件的工作也可以继续进行,因此,根据事务语句是否被写入并保存到 AOF 文件,有以下两种情况发生:
1)如果事务语句未写入到 AOF 文件,或 AOF 未被 SYNC 调用保存到磁盘,那么当进程被杀死之后,Redis 可以根据最近一次成功保存到磁盘的 AOF 文件来还原数据库,只要 AOF 文件本身没有因为其他问题而出错,那么还原后的数据库总是一致的,但其中的数据不一定是最新的。
2)如果事务的部分语句被写入到 AOF 文件,并且 AOF 文件被成功保存,那么不完整的事务执行信息就会遗留在 AOF 文件里,当重启 Redis 时,程序会检测到 AOF 文件并不完整,Redis 会退出,并报告错误。需要使用 redis-check-aof 工具将部分成功的事务命令移除之后,才能再次启动服务器。还原之后的数据总是一致的,而且数据也是最新的(直到事务执行之前为止)。
隔离性(Isolation)
Redis 是单进程程序,并且它保证在执行事务时,不会对事务进行中断,事务可以运行直到执行完所有事务队列中的命令为止。因此,Redis 的事务是总是带有隔离性的。
持久性(Durability)
因为事务不过是用队列包裹起了一组 Redis 命令,并没有提供任何额外的持久性功能,所以事务的持久性由 Redis 所使用的持久化模式决定:
在单纯的内存模式下,事务肯定是不持久的。
在 RDB 模式下,服务器可能在事务执行之后、RDB 文件更新之前的这段时间失败,所以 RDB 模式下的 Redis 事务也是不持久的。
在 AOF 的“总是 SYNC ”模式下,事务的每条命令在执行成功之后,都会立即调用 fsync 或 fdatasync 将事务数据写入到 AOF 文件。但是,这种保存是由后台线程进行的,主线程不会阻塞直到保存成功,所以从命令执行成功到数据保存到硬盘之间,还是有一段非常小的间隔,所以这种模式下的事务也是不持久的。
其他 AOF 模式也和“总是 SYNC ”模式类似,所以它们都是不持久的。
小结
(1) 事务提供了一种将多个命令打包,然后一次性、有序地执行的机制。
(2) 事务在执行过程中不会被中断,所有事务命令执行完之后,事务才能结束。
(3) 多个命令会被入队到事务队列中,然后按先进先出(FIFO)的顺序执行。
(4) 带 WATCH 命令的事务会将客户端和被监视的键在数据库的 watched_keys 字典中进行关联,当键被修改时,程序会将所有监视被修改键的客户端的 REDIS_DIRTY_CAS 选项打开。
(5) 只有在客户端的 REDIS_DIRTY_CAS 选项未被打开时,才能执行事务,否则事务直接返回失败。
(6) Redis 的事务保证了 ACID 中的一致性(C)和隔离性(I),但并不保证原子性(A)和持久性(D)。
文章资料出处: