• 机器学习: DeepDreaming with TensorFlow (一)


    在TensorFlow 的官网上,有一个很有趣的教程,就是用 TensorFlow 以及训练好的深度卷积神经(GoogleNet)网络去生成一些有趣的pattern,通过这些pattern,可以更加深入的去了解神经网络到底学到了什么, 这个教程有四个主要部分:
    1:简单的单通道纹理pattern的生成;
    2:利用tiled computation 生成高分辨率图像;
    3:利用 Laplacian Pyramid Gradient Normalization 生成各种有趣的视觉效果;
    4:生成类似 Deepdream的图像;

    这个教程还提供了一个生成pattern的图像库,

    http://storage.googleapis.com/deepdream/visualz/tensorflow_inception/index.html

    在这个库里,可以看到神经网络每一层上生成的pattern。

    在学习这个教程之前,请确保你已经安装好了Tensorflow 以及 Jupyter.

    这个教程里的所有pattern都是基于训练好的Googlenet 生成的,Googlenet 网络先在 ImageNet 上进行了足够的训练。

    先看第一部分:

    简单的单通道纹理pattern的生成

    # boilerplate code
    from __future__ import print_function
    import os
    from io import BytesIO
    import numpy as np
    from functools import partial
    import PIL.Image
    from IPython.display import clear_output, Image, display, HTML
    
    import tensorflow as tf
    
    # 运行以下这句代码将训练好的网络模型下载解压到本地:
    !wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip && unzip inception5h.zip
    
    model_fn = 'tensorflow_inception_graph.pb'
    
    # creating TensorFlow session and loading the model
    # 加载模型
    graph = tf.Graph()
    sess = tf.InteractiveSession(graph=graph)
    with tf.gfile.FastGFile(model_fn, 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    t_input = tf.placeholder(np.float32, name='input') # define the input tensor
    imagenet_mean = 117.0
    t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0)
    tf.import_graph_def(graph_def, {'input':t_preprocessed})
    
    # 获取网络的层数以及总的通道数
    layers = [op.name for op in graph.get_operations() if op.type=='Conv2D' and 'import/' in op.name]
    feature_nums = [int(graph.get_tensor_by_name(name+':0').get_shape()[-1]) for name in layers]
    
    print('Number of layers', len(layers))
    print('Total number of feature channels:', sum(feature_nums))
    
    # Picking some internal layer. Note that we use outputs before applying the ReLU nonlinearity
    # to have non-zero gradients for features with negative initial activations.
    # 选择某些中间层,以及某个通道
    layer = 'mixed4d_3x3_bottleneck_pre_relu'
    channel = 139 # picking some feature channel to visualize
    
    # start with a gray image with a little noise
    # 先生成一个噪声图像
    img_noise = np.random.uniform(size=(224,224,3)) + 100.0
    
    def showarray(a, fmt='jpeg'):
        a = np.uint8(np.clip(a, 0, 1)*255)
        f = BytesIO()
        PIL.Image.fromarray(a).save(f, fmt)
        display(Image(data=f.getvalue()))
    
    def visstd(a, s=0.1):
        # Normalize the image range for visualization
        return (a-a.mean())/max(a.std(), 1e-4)*s + 0.5
    
    def T(layer):
        # Helper for getting layer output tensor
        return graph.get_tensor_by_name("import/%s:0"%layer)
    
    def render_naive(t_obj, img0=img_noise, iter_n=20, step=1.0):
        t_score = tf.reduce_mean(t_obj) # defining the optimization objective
        t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation!
    
        img = img0.copy()
        for i in range(iter_n):
            g, score = sess.run([t_grad, t_score], {t_input:img})
            # normalizing the gradient, so the same step size should work 
            g /= g.std()+1e-8         # for different layers and networks
            img += g*step
            print(score, end = ' ')
        clear_output()
        showarray(visstd(img))
    
    render_naive(T(layer)[:,:,:,channel])
    

    我们看看生成的效果图:

    layer = ‘mixed4d_3x3_bottleneck_pre_relu’ channel = 139
    channel=139

    layer = ‘mixed3b_3x3_bottleneck_pre_relu’ channel =10

    这里写图片描述

    layer = ‘mixed3a_3x3_bottleneck_pre_relu’ channel =20

    这里写图片描述

  • 相关阅读:
    mongodb基础命令
    mongodb集合的增删
    mongodb的创建删除数据库
    单机版mongodb
    《TCP/IP 详解 卷一》读书笔记-----Ping&Traceroute
    《TCP/IP 详解 卷一》读书笔记 -----第四章 ARP
    《TCP/IP详解 卷一》读书笔记-----第三章 IP
    输入三个整数,xyz,最终以从小到大的方式输出。利用中间变量
    循环语句
    3.输入三个整数,xyz,最终以从小到大的方式输出。利用嵌套。
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9412442.html
Copyright © 2020-2023  润新知