• Python: PS 滤镜--旋涡特效


    本文用Python 实现 PS 滤镜的旋涡特效,具体的算法原理和效果可以参考之前的博客:

    http://blog.csdn.net/matrix_space/article/details/42215191

    import numpy as np
    from skimage import img_as_float
    import matplotlib.pyplot as plt
    from skimage import io
    import math
    import numpy.matlib
    
    file_name2='D:/Visual Effects/PS Algorithm/4.jpg'
    img=io.imread(file_name2)
    
    img = img_as_float(img)
    
    row, col, channel = img.shape
    img_out = img * 1.0
    degree = 70
    
    center_x = (col-1)/2.0
    center_y = (row-1)/2.0
    
    xx = np.arange (col) 
    yy = np.arange (row)
    
    x_mask = numpy.matlib.repmat (xx, row, 1)
    y_mask = numpy.matlib.repmat (yy, col, 1)
    y_mask = np.transpose(y_mask)
    
    xx_dif = x_mask - center_x
    yy_dif = center_y - y_mask
    
    r = np.sqrt(xx_dif * xx_dif + yy_dif * yy_dif)
    
    theta = np.arctan(yy_dif / xx_dif)
    
    mask_1 = xx_dif < 0
    theta = theta * (1 - mask_1) + (theta + math.pi) * mask_1
    
    theta = theta + r/degree
    
    x_new = r * np.cos(theta) + center_x
    y_new = center_y - r * np.sin(theta) 
    
    int_x = np.floor (x_new)
    int_x = int_x.astype(int)
    int_y = np.floor (y_new)
    int_y = int_y.astype(int)
    
    for ii in range(row):
        for jj in range (col):
            new_xx = int_x [ii, jj]
            new_yy = int_y [ii, jj]
    
            if x_new [ii, jj] < 0 or x_new [ii, jj] > col -1 :
                continue
            if y_new [ii, jj] < 0 or y_new [ii, jj] > row -1 :
                continue
    
            img_out[ii, jj, :] = img[new_yy, new_xx, :]
    
    
    plt.figure (1)
    plt.imshow (img)
    plt.axis('off')
    
    plt.figure (2)
    plt.imshow (img_out)
    plt.axis('off')
    
    plt.show()
    
    
  • 相关阅读:
    linux基础学习6
    Linux基础学习5
    Linux基础学习4
    Linux基础学习3
    Linux基础学习2
    ASP.NET MVC学习——控制器传递数据到view的简单案例
    转载:URL链接中的不同用处
    MVC学习的心路历程
    45道SQL数据题详细超基础解析
    结束基础,开始MVC之旅!
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9412156.html
Copyright © 2020-2023  润新知