• bjfu1235 两圆公共面积


    给定两个圆,求其覆盖的面积,其实也就是求其公共面积(然后用两圆面积和减去此值即得最后结果)。

    我一开始是用计算几何的方法做的,结果始终不过。代码如下:

    /*
     * Author    : ben
     */
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <ctime>
    #include <iostream>
    #include <algorithm>
    #include <queue>
    #include <set>
    #include <map>
    #include <stack>
    #include <string>
    #include <vector>
    #include <deque>
    #include <list>
    #include <functional>
    #include <numeric>
    #include <cctype>
    using namespace std;
    const double pi = acos(-1);
    typedef struct MyPoint {
        double x, y;
        MyPoint(double xx = 0, double yy = 0) {
            x = xx;
            y = yy;
        }
    } MyPoint;
    
    inline double mydistance2(const MyPoint &p1, const MyPoint &p2) {
        return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
    }
    
    inline double mydistance(const MyPoint &p1, const MyPoint &p2) {
        return sqrt(mydistance2(p1, p2));
    }
    
    MyPoint intersection(MyPoint u1, MyPoint u2, MyPoint v1, MyPoint v2) {
        MyPoint ret = u1;
        double t = ((u1.x - v1.x) * (v1.y - v2.y) - (u1.y - v1.y) * (v1.x - v2.x))
                / ((u1.x - u2.x) * (v1.y - v2.y) - (u1.y - u2.y) * (v1.x - v2.x));
        ret.x += (u2.x - u1.x) * t;
        ret.y += (u2.y - u1.y) * t;
        return ret;
    }
    
    void intersection_line_circle(MyPoint c, double r, MyPoint l1, MyPoint l2,
            MyPoint& p1, MyPoint& p2) {
        MyPoint p = c;
        double t;
        p.x += l1.y - l2.y;
        p.y += l2.x - l1.x;
        p = intersection(p, c, l1, l2);
        t = sqrt(r * r - mydistance(p, c) * mydistance(p, c)) / mydistance(l1, l2);
        p1.x = p.x + (l2.x - l1.x) * t;
        p1.y = p.y + (l2.y - l1.y) * t;
        p2.x = p.x - (l2.x - l1.x) * t;
        p2.y = p.y - (l2.y - l1.y) * t;
    }
    
    void intersection_circle_circle(MyPoint c1, double r1, MyPoint c2, double r2,
            MyPoint& p1, MyPoint& p2) {
        MyPoint u, v;
        double t;
        t = (1 + (r1 * r1 - r2 * r2) / mydistance(c1, c2) / mydistance(c1, c2)) / 2;
        u.x = c1.x + (c2.x - c1.x) * t;
        u.y = c1.y + (c2.y - c1.y) * t;
        v.x = u.x + c1.y - c2.y;
        v.y = u.y - c1.x + c2.x;
        intersection_line_circle(c1, r1, u, v, p1, p2);
    }
    
    int main() {
        freopen("data.in", "r", stdin);
    //    freopen("data.out", "w", stdout);
        int T;
        double x, y, r1, r2;
        scanf("%d", &T);
        double ans;
        while (T--) {
            scanf("%lf%lf%lf", &x, &y, &r1);
            MyPoint c1(x, y);
            scanf("%lf%lf%lf", &x, &y, &r2);
            MyPoint c2(x, y);
            double dis2 = mydistance2(c1, c2);
            double dis = sqrt(dis2);
            if (dis >= r1 + r2) { //相离
                ans = pi * r1 * r1 + pi * r2 * r2;
            } else if (dis <= fabs(r1 - r2)) { //包含
                double r = r1 > r2 ? r1 : r2;
                ans = pi * r * r;
            } else { //相交
                MyPoint p1, p2;
                intersection_circle_circle(c1, r1, c2, r2, p1, p2);
                double d2 = mydistance(p1, p2) / 2;
                double angle1 = asin(d2 / r1);
                double angle2 = asin(d2 / r2);
                double Sanjiao1 = sqrt(r1 * r1 - d2 * d2) * d2;
                double Sanjiao2 = sqrt(r2 * r2 - d2 * d2) * d2;
                double San1 = r1 * r1 * angle1;
                double San2 = r2 * r2 * angle2;
                ans = pi * r1 * r1 + pi * r2 * r2;
                ans -= San1 + San2 - Sanjiao1 - Sanjiao2;
            }
            printf("%.6f
    ", ans);
        }
        return 0;
    }

    根据后来的调试,应该是对如下图b的情况处理不正确。

    于是后来上网找了几个中学的解析几何公式,终于a了。

    做法是联立两个圆的方程(相减),得到相交弦所在直线方程,然后用点到直接的距离公式得到h1和h2,接着算出θ1和θ2,然后就能求得三角形的面积和扇形的面积了。一开始我以为需要分类讨论上面图a和图b两种情况,后来发现,直接去掉求距离时的取绝对值运算就可以了,因为距离为负的时候,得到的夹角也是负的,这样求的三角形面积是负的,扇形也是原先的相补的那部分,具体的图我就不画了,很容易想明白的。

    AC代码如下:

    /*
     * Author    : ben
     */
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <ctime>
    #include <iostream>
    #include <algorithm>
    #include <queue>
    #include <set>
    #include <map>
    #include <stack>
    #include <string>
    #include <vector>
    #include <deque>
    #include <list>
    #include <functional>
    #include <numeric>
    #include <cctype>
    using namespace std;
    const double pi = acos(-1);
    typedef struct MyPoint {
        double x, y;
        MyPoint(double xx = 0, double yy = 0) {
            x = xx;
            y = yy;
        }
    } MyPoint;
    
    inline double mydistance2(const MyPoint &p1, const MyPoint &p2) {
        return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
    }
    
    int main() {
    //    freopen("data.in", "r", stdin);
        int T;
        scanf("%d", &T);
        double ans, r1, r2;
        MyPoint c1, c2;
        while (T--) {
            scanf("%lf%lf%lf", &c1.x, &c1.y, &r1);
            scanf("%lf%lf%lf", &c2.x, &c2.y, &r2);
            double dis2 = mydistance2(c1, c2);
            double dis = sqrt(dis2);
            if (dis >= r1 + r2) { //相离
                ans = pi * r1 * r1 + pi * r2 * r2;
            } else if (dis <= fabs(r1 - r2)) { //包含
                double r = r1 > r2 ? r1 : r2;
                ans = pi * r * r;
            } else { //相交
                //h1和h2可能为负
                double h1 = (dis2 + r1 * r1 - r2 * r2) / dis / 2.0;
                double h2 = dis - h1;
                double angle1 = acos(h1 / r1);
                double angle2 = acos(h2 / r2);
                double Sanjiao = sqrt(r1 * r1 - h1 * h1) * dis;
                double Sanxin1 = r1 * r1 * angle1;
                double Sanxin2 = r2 * r2 * angle2;
                ans = pi * r1 * r1 + pi * r2 * r2;
                ans -= Sanxin1 + Sanxin2 - Sanjiao;
            }
            printf("%.6f
    ", ans);
        }
        return 0;
    }
  • 相关阅读:
    每日总结
    每日总结
    每日总结
    每日总结
    每日总结
    每日总结
    每日总结
    每日总结
    每日总结
    Windows邮件添加QQ邮箱
  • 原文地址:https://www.cnblogs.com/moonbay/p/4138159.html
Copyright © 2020-2023  润新知